1
|
Sarlon J, Partonen T, Lang UE. Potential links between brown adipose tissue, circadian dysregulation, and suicide risk. Front Neurosci 2023; 17:1196029. [PMID: 37360180 PMCID: PMC10288144 DOI: 10.3389/fnins.2023.1196029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Circadian desynchronizations are associated with psychiatric disorders as well as with higher suicidal risk. Brown adipose tissue (BAT) is important in the regulation of body temperature and contributes to the homeostasis of the metabolic, cardiovascular, skeletal muscle or central nervous system. BAT is under neuronal, hormonal and immune control and secrets batokines: i.e., autocrine, paracrine and endocrine active substances. Moreover, BAT is involved in circadian system. Light, ambient temperature as well as exogen substances interact with BAT. Thus, a dysregulation of BAT can indirectly worsen psychiatric conditions and the risk of suicide, as one of previously suggested explanations for the seasonality of suicide rate. Furthermore, overactivation of BAT is associated with lower body weight and lower level of blood lipids. Reduced body mass index (BMI) or decrease in BMI respectively, as well as lower triglyceride concentrations were found to correlate with higher risk of suicide, however the findings are inconclusive. Hyperactivation or dysregulation of BAT in relation to the circadian system as a possible common factor is discussed. Interestingly, substances with proven efficacy in reducing suicidal risk, like clozapine or lithium, interact with BAT. The effects of clozapine on fat tissue are stronger and might differ qualitatively from other antipsychotics; however, the significance remains unclear. We suggest that BAT is involved in the brain/environment homeostasis and deserves attention from a psychiatric point of view. Better understanding of circadian disruptions and its mechanisms can contribute to personalized diagnostic and therapy as well as better assessment of suicide risk.
Collapse
Affiliation(s)
- Jan Sarlon
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Undine E. Lang
- University Psychiatric Clinics (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Yu L, Zhou T, Shao M, Zhang T, Wang J, Ma Y, Xu S, Chen Y, Zhu J, Pan F. The role of meteorological factors in suicide mortality in Wuhu, a humid city along the Yangtze River in Eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9558-9575. [PMID: 36057060 DOI: 10.1007/s11356-022-22832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
As the climate continues to change, suicide is becoming more frequent. In this study, absolute humidity (AH) was included for the first time and Wuhu, a typical subtropical city along the Yangtze River, was taken as the research object to explore the impact of suicide death risk on meteorological factors. The daily meteorological factors and suicide mortality data of Wuhu city from 2014 to 2020 were collected. Guided by structural equation model (SEM), a time series analysis method combining distributed lag nonlinear model (DLNM) and generalized additive model (GAM) was adopted. To investigate the correlation among different populations, we stratified age and gender at different meteorological levels. A total of 1259 suicide deaths were collected in Wuhu. The results indicated that exceedingly low and low levels of AH short-term exposure increased suicide mortality, with the maximum effect occurring at lag 14 for both levels of exposure, when the relative risk (RR) was 1.131 (95% CI: 1.030, 1.242) and 1.065 (95% CI: 1.006, 1.127), respectively. Exposure to exceedingly high and exceedingly low levels of temperature mean (T mean) also increased suicide mortality, with maximum RR values of 1.132 (lag 14, 95% CI: 1.015, 1.263) and 1.203 (lag 0, 95% CI: 1.079, 1.340), sequentially. As for diurnal temperature range (DTR), low-level exposure decreased the risk of suicide, while high-level exposure increased this risk, with RR values of 0.955 (lag 0, 95% CI: 0.920, 0.991, minimum) and 1.060 (lag 0, 95% CI: 1.018, 1.104, maximum), sequentially. Stratified analysis showed that AH and DTR increased the suicide death risk in male and elderly people, while the risk effect of T mean have no effect on young people only. In summary, male and elderly people appear to be more vulnerable to adverse weather effects.
Collapse
Affiliation(s)
- Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Tingting Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Jinian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Jiansheng Zhu
- Wuhu Center for Disease Control and Prevention, Wuhu, Anhui Province, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
- The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
3
|
Roy A, Alam MA, Kim Y, Hashizume M. Association between daily ambient temperature and drug overdose in Tokyo: a time-series study. Environ Health Prev Med 2022; 27:36. [PMID: 36171116 PMCID: PMC9556974 DOI: 10.1265/ehpm.21-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous studies have reported that high ambient temperature is associated with increased risk of suicide; however, the association has not been extensively investigated with drug overdose which is the most common method of unsuccessful suicidal behavior in Japan. Therefore, this study aims to examine the short-term association between daily mean temperature and the incidence of self-harm attempts by drug overdose in Tokyo, Japan. METHODS We collected the emergency ambulance dispatch data and daily meteorological data in Tokyo from 2010 to 2014. A quasi-Poisson regression model incorporating a distributed lag non-linear function was applied to estimate the non-linear and delayed association between temperature and drug overdose, adjusting for relative humidity, seasonal and long-term trends, and days of the week. Sex, age and location-specific associations of ambient temperature with drug overdose was also estimated. RESULTS 12,937 drug overdose cases were recorded during the study period, 73.9% of which were female. We observed a non-linear association between temperature and drug overdose, with the highest risk observed at 21 °C. The highest relative risk (RR) was 1.30 (95% Confidence Interval (CI): 1.10-1.67) compared with the risk at the first percentile of daily mean temperature (2.9 °C) over 0-4 days lag period. In subgroup analyses, the RR of a drug overdose at 21 °C was 1.36 (95% CI: 1.02-1.81) for females and 1.07 (95% CI: 0.66-1.75) for males. Also, we observed that the risk was highest among those aged ≥65 years (RR = 2.54; 95% CI: 0.94-6.90), followed by those aged 15-34 years (RR = 1.25; 95% CI: 0.89-1.77) and those aged 35-64 years (RR = 1.15; 95% CI: 0.78-1.68). There was no evidence for the difference in RRs between urban (23 special wards) and sub-urban areas in Tokyo. CONCLUSIONS An increase in daily mean temperature was associated with increased drug overdose risk. This study indicated the positive non-linear association between temperature and incomplete attempts by drug overdose. The findings of this study may add further evidence of the association of temperature on suicidal behavior and suggests increasing more research and investigation of other modifying factors.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo
| | - Md Ashraful Alam
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo
| | - Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
4
|
Kuo YY, Lin JK, Lin YT, Chen JC, Kuo YM, Chen PS, Wu SN, Chen PC. Glibenclamide restores dopaminergic reward circuitry in obese mice through interscauplar brown adipose tissue. Psychoneuroendocrinology 2020; 118:104712. [PMID: 32479969 DOI: 10.1016/j.psyneuen.2020.104712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity, a critical feature in metabolic disorders, is associated with medical depression. Recent evidence reveals that brown adipose tissue (BAT) activity may contribute to mood disorders, Adenosine triphosphate (ATP)-sensitive K+ (KATP) channels regulate BAT sympathetic nerve activity. However, the mechanism through which BAT activity affects mood control remains unknown. We hypothesized the BAT is involved in depressive-like symptoms regulation by trafficking KATP channels. METHODS Eight-week-old male B6 mice fed with a high-fat diet (HFD) for 12 weeks exhibited characteristics of metabolic disorders, including hyperglycemia, hyperinsulinemia, and hyperlipidemia, as well as depressive symptoms. In this study, we surgically removed interscapular BAT in mice, and these mice exhibited immobility in the forced swim test and less preference for sugar water compared with other mice. To delineate the role of KATP channels in BAT activity regulation, we implanted a miniosmotic pump containing glibenclamide (GB), a KATP channel blocker, into the interscapular BAT of HFD-fed mice. RESULTS GB infusion improved glucose homeostasis, insulin sensitivity, and depressive-like symptoms. KATP channel expression was lower in HFD-fed mice than in chow-fed mice. Notably, GB infusion in HFD-fed mice restored KATP channel expression. CONCLUSION KATP channels are functionally expressed in BAT, and inhibiting BAT-KATP channels improves metabolic syndromes and reduces depressive symptoms through beta-3-adrenergic receptor-mediated protein kinase A signaling.
Collapse
Affiliation(s)
- Yi-Ying Kuo
- Department of Physiology, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | | | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan
| | - Yu-Ming Kuo
- Department of Cell Biology and Anatomy, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Chun Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|