1
|
Syrkina MS, Rubtsov MA. MUC1 in Cancer Immunotherapy - New Hope or Phantom Menace? BIOCHEMISTRY (MOSCOW) 2019; 84:773-781. [PMID: 31509728 DOI: 10.1134/s0006297919070083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding of the functioning of MUC1 (human mucin) has advanced significantly over 40 years of its investigation. The anti-adhesive properties of the extracellular domain, which were the main focus of early studies initially explaining overexpression of MUC1 in progressing oncological diseases, were gradually put on the back burner. Researchers became more interested in its regulatory and signaling functions in cells rather in its anti-adhesive properties. The found the ability of MUC1 for signal transduction, and its ability to participate in cell metabolism opened new possibilities for improved control over cancer cells in addition to just attracting antigens of the immune system to a target. Nevertheless, there are issues in the functioning of MUC1 that raise doubts about its effectiveness in cancer immunotherapy.
Collapse
Affiliation(s)
- M S Syrkina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119234, Russia. .,Lomonosov Moscow State University, Laboratoire Franco-Russe de Recherches en Oncologie, Moscow, 119234, Russia
| | - M A Rubtsov
- Lomonosov Moscow State University, Department of Biology, Moscow, 119234, Russia. .,Lomonosov Moscow State University, Laboratoire Franco-Russe de Recherches en Oncologie, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
2
|
Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H. Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Front Immunol 2019; 9:3062. [PMID: 30740109 PMCID: PMC6357938 DOI: 10.3389/fimmu.2018.03062] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Malignant gliomas carry a dismal prognosis. Conventional treatment using chemo- and radiotherapy has limited efficacy with adverse events. Therapy with genetically engineered T-cells, such as chimeric antigen receptor (CAR) T-cells, may represent a promising approach to improve patient outcomes owing to their potential ability to attack highly infiltrative tumors in a tumor-specific manner and possible persistence of the adaptive immune response. However, the unique anatomical features of the brain and susceptibility of this organ to irreversible tissue damage have made immunotherapy especially challenging in the setting of glioma. With safety concerns in mind, multiple teams have initiated clinical trials using CAR T-cells in glioma patients. The valuable lessons learnt from those trials highlight critical areas for further improvement: tackling the issues of the antigen presentation and T-cell homing in the brain, immunosuppression in the glioma microenvironment, antigen heterogeneity and off-tumor toxicity, and the adaptation of existing clinical therapies to reflect the intricacies of immune response in the brain. This review summarizes the up-to-date clinical outcomes of CAR T-cell clinical trials in glioma patients and examines the most pressing hurdles limiting the efficacy of these therapies. Furthermore, this review uses these hurdles as a framework upon which to evaluate cutting-edge pre-clinical strategies aiming to overcome those barriers.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kira M Downey
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bindu Hegde
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Neil D Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States.,Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Tavolaro S, Kermarrec É, Bazot M, Thomassin-Naggara I, Cornelis FH. Imagerie et radiologie interventionnelle chez la femme : nouveautés et perspectives. IMAGERIE DE LA FEMME 2018. [DOI: 10.1016/j.femme.2018.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Acres B, Lacoste G, Limacher JM. Targeted Immunotherapy Designed to Treat MUC1-Expressing Solid Tumour. Curr Top Microbiol Immunol 2015; 405:79-97. [PMID: 25702159 DOI: 10.1007/82_2015_429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several approaches to antigen-specific immunotherapy of cancer antigen-specific immunotherapy of cancer have been tested clinically. In this chapter, we will describe studies done with the antigen MUC1. Tested MUC1 therapeutic vaccines include the following: monoclonal antibodies (MAbs) specific for MUC1; synthetic and recombinant polypeptides from the protein sequence of MUC1; dendritic cells carrying MUC1; RNA and DNA vaccinations; and recombinant viruses carrying the MUC1 DNA sequence. Chemotherapy of cancer aims to be toxic to the cancer cells with manageable side effects to the patient. In contrast, antigen-specific immunotherapy of cancer aims to treat the patient, such that the patient is then able to control and eventually eliminate their cancer cells. It is therefore important to know the immune status of each cancer patient prior to therapy.
Collapse
Affiliation(s)
| | - Gisele Lacoste
- Department of Medical Affairs, Transgene SA, 400 Blvd Gonthier d'Andernach, Parc d'Innovation CS80166, 67405, Illkirch-Graffenstaden Cedex, France.
| | - Jean-Marc Limacher
- Department of Medical Affairs, Transgene SA, 400 Blvd Gonthier d'Andernach, Parc d'Innovation CS80166, 67405, Illkirch-Graffenstaden Cedex, France
| |
Collapse
|
5
|
Abstract
The therapeutic potential of host-specific and tumour-specific immune responses is well recognized and, after many years, active immunotherapies directed at inducing or augmenting these responses are entering clinical practice. Antitumour immunization is a complex, multi-component task, and the optimal combinations of antigens, adjuvants, delivery vehicles and routes of administration are not yet identified. Active immunotherapy must also address the immunosuppressive and tolerogenic mechanisms deployed by tumours. This Review provides an overview of new results from clinical studies of therapeutic cancer vaccines directed against tumour-associated antigens and discusses their implications for the use of active immunotherapy.
Collapse
|
6
|
Wang ZX, Cao JX, Wang M, Li D, Cui YX, Zhang XY, Liu JL, Li JL. Adoptive cellular immunotherapy for the treatment of patients with breast cancer: A meta-analysis. Cytotherapy 2014; 16:934-45. [DOI: 10.1016/j.jcyt.2014.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 01/08/2023]
|
7
|
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially reported as suppressor of the adaptive immune responses against cancer and other diseases. However, emerging evidence suggest that MDSCs may also support anti-tumor immune responses under certain conditions or may inhibit tumor growth. In the present mini-review, we suggest that such opposing functions of MDSCs are due to phenotypic plasticity of the myeloid cells, allowing them to produce a diverse form of morphology, physiological state, and function in response to environmental conditions. Therefore, they can be manipulated by means of immune modulators to overcome their immune suppressive function.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, Virginia 232989, USA.
| |
Collapse
|
8
|
MUC1-specific cytotoxic T lymphocytes in cancer therapy: induction and challenge. BIOMED RESEARCH INTERNATIONAL 2012; 2013:871936. [PMID: 23509794 PMCID: PMC3591236 DOI: 10.1155/2013/871936] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/06/2012] [Indexed: 01/08/2023]
Abstract
MUC1 glycoprotein is often found overexpressed and hypoglycosylated in tumor cells from numerous cancer types. Since its discovery MUC1 has been an attractive target for antitumor immunotherapy. Indeed, in vitro and in vivo experiments have shown T-cell-specific responses against MUC1 in an HLA-restricted and HLA-unrestricted manner, although some animal models have highlighted the possible development of tolerogenic responses against this antigen. These observations permit the development of new T-cell vaccine strategies capable of inducing an MUC1-specific cytotoxic T cell response in cancer patients. Some of these strategies are now being tested in clinical trials against different types of cancer. To date, encouraging clinical responses have been observed with some MUC1 vaccines in phase II/III clinical trials. This paper compiles knowledge regarding MUC1 as a promising tumor antigen for antitumor therapeutic vaccines applicable to numerous cancers. We also summarize the results of MUC1-vaccine-based clinical trials.
Collapse
|
9
|
Abstract
INTRODUCTION Success of HBV vaccines in reducing the incidence of liver cancer, and HPV vaccines in reducing preneoplastic cervical lesions, demonstrate the potential of cancer reduction by harnessing the immune system. For most human cancers, infectious etiology is not known but other tumor antigens, candidates for vaccines, have been identified. AREAS COVERED The authors discuss knowledge accumulated the last two decades on the tumor antigen MUC1 that has put it at the top of the list as an immunotherapy reagent. They examine evidence that anti-MUC1 immunity affects tumor development and prognosis. Finally, they review two decades of immunotherapy trials targeting MUC1, focusing primarily on vaccines but also adoptive antibody and T-cell therapies. EXPERT OPINION Most approaches targeting MUC1 have been immunotherapies administered to date to more than 1200 patients in clinical trials. Even though these trials focused on advanced cancer, encouraging results were reported particularly for less immunosuppressed patients. Furthermore, spontaneous anti-MUC1 immune responses are associated with better prognosis or with a reduced lifetime risk of developing MUC1+ cancers. MUC1 is abnormally expressed in over 80% of all cancers. Successfully targeting this molecule could benefit over a million patients diagnosed yearly with MUC1+ tumors just in the USA.
Collapse
Affiliation(s)
- Takashi Kimura
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA 15261 , USA
| | | |
Collapse
|
10
|
Abstract
INTRODUCTION Immunotherapy of breast cancer has been shown to prevent recurrence, improve survival and eliminate breast cancer in humans. AREAS COVERED The reason for this review is to present the current information and the prospects for the future of immunotherapy of breast cancer in humans to include tumor antigens for vaccines and targets for monoclonal antibodies and adoptive T-cell therapy, and immune modulatory agents, such as adjuvants to stimulate the immune response and inhibitors of checkpoint blockade to prevent downmodulation of activated lymphocytes, to enhance these modalities. The research discussed and the literature search undertaken is of the clinical immunotherapy of breast cancer in humans, from 2000 to September, 2011. EXPERT OPINION The key message of the paper is that one reason for the failure of the immune system to control macroscopic disease is that the immune escape mechanisms involving both tumor and the tumor stroma prevent the immune system from destroying the tumor. Changing the tumor microenvironment is necessary to eliminate macroscopic tumors. Prospects for improvement are proposals for combining current modalities of therapy with type 1 cellular immunity-inducing agents, all targeting multiple tumor antigens and in the context of minimal disease.
Collapse
Affiliation(s)
- Stephen E Wright
- Departments of Internal Medicine and Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
11
|
Abstract
The objective was to evaluate the toxicity and feasibility of intraperitoneal infusion of tumor-specific cytotoxic T lymphocytes (CTL) as therapy for recurrent ovarian cancer, and to determine if repetitive cycles of CTL generation and infusion measurably increases the host's ovarian cancer immune response. In this study, 7 subjects with recurrent ovarian cancer confined to the peritoneal cavity underwent up to 4 cycles, each cycle beginning with a leukapheresis for collection of precursor lymphocytes, which were stimulated in vitro with mucin 1, a tumor-specific antigen found commonly in ovarian cancer cells. The resulting new CTL for each cycle were reintroduced into the host by intraperitoneal infusion. Immunologic parameters (killer cells, cytokine production, memory T lymphocytes, and natural killer cells) were studied. Toxicity, CA-125, and survival data were also evaluated. The tumor marker CA-125 was nonstatistically significantly reduced after the first month of immunotherapy. However, after that it rose. Killer cells, cytokine production, and memory T lymphocytes increased after the first cycle of stimulation, but plateaued or reduced thereafter. The percent of natural killer cells inversely correlated with other immune parameters. Median survival was 11.5 months. One subject is free of disease since December, 2000. Multiple cycles, beyond 1 cycle, of T-cell stimulation followed by adoptive T-cell infusion, may not enhance the in vivo immune response.
Collapse
|
12
|
Abstract
BACKGROUND Harnessing the immune response in treating breast cancer would potentially offer a less toxic, more targeted approach to eradicating residual disease. Breast cancer vaccines are being developed to effectively train cytotoxic T cells to recognize and kill transformed cells while sparing normal ones. However, achieving this goal has been problematic due to the ability of established cancers to suppress and evade the immune response. METHODS A review of the literature on vaccines and breast cancer treatment was conducted, specifically addressing strategies currently available, as well as appropriate settings, paradigms for vaccine development and response monitoring, and challenges with immunosuppression. RESULTS Multiple issues need to be addressed in order to optimize the benefits offered by breast cancer vaccines. Primary issues include the following: (1) cancer vaccines will likely work better in a minimal residual disease state, (2) clinical trial design for immunotherapy should incorporate recommendations from expert groups such as the Cancer Vaccine Working Group and use standardized immune response measurements, (3) the presently available cancer vaccine approaches, including dendritic cell-based, tumor-associated antigen peptide-based, and whole cell-based, have various pros and cons, (4) to date, no one approach has been shown to be superior to another, and (5) vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immunosuppression. CONCLUSIONS Combining a properly optimized cancer vaccine with novel immunomodulating agents that overcome tumor-related immunosuppression in a well-designed clinical trial offers the best hope for developing an effective breast cancer vaccine strategy.
Collapse
Affiliation(s)
- Hatem Soliman
- Department of Women's Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
14
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:207-27. [DOI: 10.1097/spc.0b013e32833e8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|