1
|
Mao J, Eom GD, Yoon KW, Kim MJ, Chu KB, Kang HJ, Quan FS. Crossprotection induced by virus-like particles containing influenza dual-hemagglutinin and M2 ectodomain. Nanomedicine (Lond) 2024; 19:741-754. [PMID: 38390688 DOI: 10.2217/nnm-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.
Collapse
Affiliation(s)
- Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
2
|
Li S, Qiao Y, Xu Y, Li P, Nie J, Zhao Q, Chai W, Shi Y, Kong W, Shan Y. Identification of Linear Peptide Immunogens with Verified Broad-spectrum Immunogenicity from the Conserved Regions within the Hemagglutinin Stem Domain of H1N1 Influenza Virus. Immunol Invest 2020; 51:411-424. [PMID: 33078652 DOI: 10.1080/08820139.2020.1834579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Influenza A viruses (IAVs) induce acute respiratory disease and cause severe epidemics and pandemics. Since IAVs exhibit antigenic variation and genome reassortment, the development of broad-spectrum influenza vaccines is crucial. The stem of the hemagglutinin (HA) is highly conserved across IAV strains and thus has been explored in broad-spectrum influenza vaccine studies. The present study aimed to identify viral epitopes capable of eliciting effective host immune responses, which can be explored for the development of broad-spectrum non-strain specific prophylactic options against IAV.Methods: In this study, a series of conserved linear sequences from the HA stem of IAV (H1N1) was recognized by sequence alignment and B/T-cell epitope prediction after being chemically coupled to the Keyhole Limpet Hemocyanin (KLH) protein. The predicted linear epitopes were identified by enzyme-linked immunosorbent assay (ELISA) after animal immunization and then fused with ferritin carriers.Results: Three predicted linear epitopes with relatively strong immunogenicity, P3, P6 and P8 were fused with ferritin carriers P3F, P6F and P8F, respectively to further improve their immunogenicity. Antibody titre of the sera of mice immunized with the recombinant immunogens revealed the elicitation of specific antibody-binding activities by the identified sequences. While hemagglutinin-inhibition activities were not detected in the antisera, neutralizing antibodies against the H1 and H3 virus subtypes were detected by the microneutralization assay.Conclusion: The linear epitopes fused with ferritin identified in this study can lay the foundation for future advancements in development of broad-spectrum subunit vaccine against IAV (H1N1), and give rise to the potential future applicability of ferritin-based antigen delivery nanoplatforms.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Xu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengju Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wen Chai
- Changchun Institute of Biological Products Co., Ltd, Changchun, Jilin, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Shin JI, Park YC, Song JM. Influence of temperature on the antigenic changes of virus-like particles. Clin Exp Vaccine Res 2020; 9:126-132. [PMID: 32864369 PMCID: PMC7445320 DOI: 10.7774/cevr.2020.9.2.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose In this study, we investigated whether the antigenic changes of the virus-like particles (VLPs) are affected by the temperature during storage. Materials and Methods After exposing the recombinant influenza VLPs to various temperatures for a period, antigenic changes were examined through in vitro hemagglutination receptor binding assay and in vivo mouse experiments. Results Influenza VLPs were exposed at three different temperatures of low, middle, and high on a thermo-hygrostat. High temperature exposed influenza VLPs were showed significantly reduced HA activity and immunogenicity after mouse single immunization over time compared low and middle. When the VLPs exposed to the high temperature were inoculated once in the mice, it was found that the immunogenicity was significantly reduced compared to the VLPs exposed to the low temperature. However, these differences were almost neglected when mice were inoculated twice even with VLPs exposed to high temperatures. Conclusion This study suggests that similar protective effects can be expected by controlling the number of vaccination and storage conditions, although the antigenic change in the VLP vaccines occurred when exposed to high temperature.
Collapse
Affiliation(s)
- Jae-In Shin
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Young Chan Park
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Jae Min Song
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| |
Collapse
|
4
|
Lee GJ, Chu KB, Inn KS, Moon EK, Quan FS. Vaccine Efficacy Induced by 2009 Pandemic H1N1 Virus-Like Particles Differs from that Induced by Split Influenza Virus. Immunol Invest 2019; 49:781-793. [PMID: 31774021 DOI: 10.1080/08820139.2019.1694539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Influenza virus-like particles (VLPs) vaccines are highly immunogenic, showing strong protective efficacy against homologous virus infection compared to split vaccine. However, a comparative efficacy study against heterosubtypic virus infection between VLPs and split vaccine has yet to been reported. In this study, we generated VLPs vaccine containing hemagglutinin (HA) and matrix protein (M1) of the 2009 pandemic H1N1, and investigated the protective efficacies induced by VLPs vaccine and commercial monovalent H1N1 pandemic split vaccine from Sanofi-Pasteur. Mice were intramuscularly immunized with either VLPs vaccine or split vaccine and subsequently challenge-infected with homologous virus (A/California/04/2009, H1N1) or heterosubtypic virus (A/Philippines/82, H3N2) after 4.5 months. VLPs vaccination demonstrated a higher level of protective efficacy against homologous viruses compared to split vaccine, as lessened lung viral loads and minuscule levels of proinflammatory lung cytokines IFN-gamma and IL-6 were observed. Protective efficacies were close to non-existent in VLP-immunized mice challenged with heterosubtypic viruses (H3N2). In contrast, split vaccine showed lower vaccine efficacy against homologous virus than VLP vaccine, but conferred better protection against heterosubtypic viruses through lung viral loads reduction and heightened survival rate. These results indicate that influenza VLPs provide better protective efficacy against homologous virus challenge infection, whereas split vaccine shows better protective efficacy against heterosubtypic virus challenge. Findings from the current study contribute to the rational design of vaccines conferring a broad range of protection.
Collapse
Affiliation(s)
- Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University , Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University , Seoul, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine , Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine , Seoul, Republic of Korea.,Department of Microbiology and Immunology, Emory University School of Medicine , Atlanta, Georgia, USA.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
5
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
6
|
Ren Z, Zhao Y, Liu J, Ji X, Meng L, Wang T, Sun W, Zhang K, Sang X, Yu Z, Li Y, Feng N, Wang H, Yang S, Yang Z, Wang Z, Gao Y, Xia X. Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine 2018; 36:5990-5998. [PMID: 30172635 DOI: 10.1016/j.vaccine.2018.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that intramuscular immunization with virus-like particles (VLPs) composed of the haemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) protected mice from lethal challenge with viruses from other H5 HPAI clades. The inclusion of additional proteins that can serve as immunological adjuvants in VLPs may enhance adaptive immune responses following vaccination, and oral vaccines may represent the safest choice. Here, we report the generation of H5N1 VLPs composed of the viral HA, NA, and M1 proteins and membrane-anchored forms of the Escherichia coli heat-labile enterotoxin B subunit protein (LTB) or the Toll-like receptor 5 ligand flagellin (Flic). Mice intramuscularly or orally immunized with VLPs containing LTB or Flic generated greater humoural and cellular immune responses than those administered H5N1 VLPs without LTB or Flic. Intramuscular immunization with VLPs protected mice from lethal challenge with homologous or heterologous H5N1 viruses irrespective of whether the VLPs additionally included LTB or Flic. In contrast, oral immunization of mice with LTB- or Flic-VLPs conferred substantial protection against lethal challenge with both homologous and heterologous H5N1 influenza viruses, whereas mice immunized orally with VLPs lacking LTB and Flic universally succumbed to infection. Mice immunized orally with LTB- or Flic-VLPs showed 10-fold higher virus-specific IgG titres than mice immunized with H5N1-VLPs lacking LTB or Flic. Collectively, these results indicate that the inclusion of immunostimulatory proteins, such as LTB and Flic, in VLP-based vaccines may represent a promising new approach for the control of current H5N1 HPAI outbreaks by eliciting higher humoural and cellular immune responses and conferring improved cross-clade protection.
Collapse
Affiliation(s)
- Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China.
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Jing Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Weiyang Sun
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Kun Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiaoyu Sang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhijun Yu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Yuanguo Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Ren Z, Zhao Y, Liu J, Ji X, Meng L, Wang T, Sun W, Zhang K, Sang X, Yu Z, Li Y, Feng N, Wang H, Yang S, Yang Z, Ma Y, Gao Y, Xia X. Intramuscular and intranasal immunization with an H7N9 influenza virus-like particle vaccine protects mice against lethal influenza virus challenge. Int Immunopharmacol 2018; 58:109-116. [PMID: 29571081 DOI: 10.1016/j.intimp.2017.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023]
Abstract
The H7N9 influenza virus epidemic has been associated with a high mortality rate in China. Therefore, to prevent the H7N9 virus from causing further damage, developing a safe and effective vaccine is necessary. In this study, a vaccine candidate consisting of virus-like particles (VLPs) based on H7N9 A/Shanghai/2/2013 and containing hemagglutinin (HA), neuraminidase (NA), and matrix protein (M1) was successfully produced using a baculovirus (BV) expression system. Immunization experiments showed that strong humoral and cellular immune responses could be induced by the developed VLPs when administered via either the intramuscular (IM) or intranasal (IN) immunization routes. Notably, VLPs administered via both immunization routes provided 100% protection against lethal infection caused by the H7N9 virus. The IN immunization with 40μg of H7N9 VLPs induced strong lung IgA and lung tissue resident memory (TRM) cell-mediated local immune responses. These results provide evidence for the development of an effective preventive vaccine against the H7N9 virus based on VLPs administered through both the IM and IN immunization routes.
Collapse
Affiliation(s)
- Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng 475004, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medicine, Kaifeng 475004, China
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jing Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Weiyang Sun
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Kun Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xiaoyu Sang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhijun Yu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Yuanguo Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng 475004, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medicine, Kaifeng 475004, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng 475004, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medicine, Kaifeng 475004, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
8
|
Quan FS, Lee YT, Kim KH, Kim MC, Kang SM. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines 2016; 15:1281-93. [PMID: 27058302 DOI: 10.1080/14760584.2016.1175942] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination.
Collapse
Affiliation(s)
- Fu-Shi Quan
- a Department of Medical Zoology , Kyung Hee University School of Medicine , Seoul , Korea
| | - Young-Tae Lee
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Ki-Hye Kim
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Min-Chul Kim
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA.,c Animal and Plant Quarantine Agency , Gimcheon , Korea
| | - Sang-Moo Kang
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
9
|
Ji X, Ren Z, Xu N, Meng L, Yu Z, Feng N, Sang X, Li S, Li Y, Wang T, Zhao Y, Wang H, Zheng X, Jin H, Li N, Yang S, Cao J, Liu W, Gao Y, Xia X. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus. Viruses 2016; 8:115. [PMID: 27110810 PMCID: PMC4848608 DOI: 10.3390/v8040115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/14/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022] Open
Abstract
Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.
Collapse
Affiliation(s)
- Xianliang Ji
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, China.
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Zhiguang Ren
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100730, China.
- Key Lab of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475001, China.
| | - Na Xu
- Jilin Medical University, Changchun 132013, China.
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Zhijun Yu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100730, China.
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Xiaoyu Sang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shengnan Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yuanguo Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Nanjing 210009, China.
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Nanjing 210009, China.
| | - Xuexing Zheng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- School of Public Health, Shandong University, Jinan 250110, China.
| | - Hongli Jin
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Nan Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Nanjing 210009, China.
| | - Jinshan Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot 010018, China.
| | - Wensen Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Nanjing 210009, China.
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Nanjing 210009, China.
| |
Collapse
|
10
|
Kim YC, Lee SH, Choi WH, Choi HJ, Goo TW, Lee JH, Quan FS. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection. J Drug Target 2016; 24:943-951. [PMID: 26957023 DOI: 10.3109/1061186x.2016.1159213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p < 0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.
Collapse
Affiliation(s)
- Yeu-Chun Kim
- a Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, Korea
| | - Su-Hwa Lee
- b Department of Biomedical Science, Graduate School, Kyung Hee University , Seoul, Korea
| | - Won-Hyung Choi
- c Department of Medical Zoology, Kyung Hee University School of Medicine , Seoul, Korea
| | - Hyo-Jick Choi
- d Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta, Canada
| | - Tae-Won Goo
- e Department of Biochemistry, Dongguk University College of Medicine , Gyeongju, Korea
| | - Ju-Hie Lee
- f Department of Pathology, Kyung Hee University Medical Center , Seoul, Korea
| | - Fu-Shi Quan
- c Department of Medical Zoology, Kyung Hee University School of Medicine , Seoul, Korea
| |
Collapse
|
11
|
Farzin H, Toroghi R, Haghparast A. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549). Immunol Invest 2016; 45:116-29. [DOI: 10.3109/08820139.2015.1099663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Rittenhouse-Olson K. Letter from the Editor. Immunol Invest 2015; 44:713-8. [PMID: 26575460 DOI: 10.3109/08820139.2015.1099411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Ren Z, Ji X, Meng L, Wei Y, Wang T, Feng N, Zheng X, Wang H, Li N, Gao X, Jin H, Zhao Y, Yang S, Qin C, Gao Y, Xia X. H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Res 2015; 200:9-18. [PMID: 25599603 DOI: 10.1016/j.virusres.2015.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/20/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has become highly enzootic since 2003 and has dynamically evolved to undergo substantial evolution. Clades 2.3.2.1 and 2.3.4 have become the most dominant lineage in recent years, and H5N8 avian influenza outbreaks have been reported Asia. The current approach to generate influenza virus vaccines uses embryonated chicken eggs for large-scale production, although such vaccines have been poorly immunogenic to heterologous virus challenge. In the current study, virus-like particles (VLP) based on A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) and comprising hemagglutinin (HA), neuraminidase (NA), and matrix (M1) were produced using a baculovirus expression system to develop effective protection for different H5 HPAI clade challenges. Mice immunized with VLP demonstrated stronger humoral and cellular immune responses than mice immunized with whole influenza virus (WIV), with 20-fold higher IgG antibody titers against A/meerkat/Shanghai/SH-1/2012 after boost. Notably, the WIV vaccine group showed partial protection (80% survival) to homologous challenge, little protection (40% survival) to heterologous challenge, and 20% survival to H5N8 challenge, whereas all mice in the VLP+CFA group survived. These results provide insight for the development of effective prophylactic vaccines based on VLPs with cross-clade protection for the control of current H5 HPAI outbreaks in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Chick Embryo
- Cross Protection
- Female
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Zhiguang Ren
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yurong Wei
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xuexing Zheng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Nan Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiaolong Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hongli Jin
- Changchun SR Biological Technology Co., Ltd, Changchun, Jilin Province, China
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Xianzhu Xia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
14
|
Rittenhouse-Olson K. Letter from the editor: immunological Investigations. Immunol Invest 2014; 43:727-33. [PMID: 25296230 DOI: 10.3109/08820139.2014.962855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Jung M, Park HT, Park JH, Lee KN, Shin SW, Shin MK, Sung KY, Jung YK, Kim B, Yoo HS. Effects of germanium biotite supplement on immune responses of vaccinated mini-pigs to foot-and-mouth disease virus challenge. Immunol Invest 2014; 44:101-12. [PMID: 25058651 DOI: 10.3109/08820139.2014.938164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since the outbreaks of foot-and-mouth disease (FMD) in South Korea in 2010-2011, a trivalent vaccine has been used as a routine vaccination. Despite the high efficacy of the trivalent vaccine, low antibody formation was reported in the pig industry and there is considerable concern about the ability of the vaccine to protect against the Andong strain responsible for recent outbreaks in South Korea. To overcome these problems, immunostimulators have been widely used to improve vaccine efficacy in South Korea, although without any scientific evidence. Based on the current situation, the aim of this study was to investigate the effects of germanium biotite, a feed supplement used to enhance the immune system, on the immune responses to FMD vaccination through the Andong strain challenge experiment in trivalent vaccinated pigs. Following the challenge, the germanium biotite-fed pigs showed high levels of IL-8 in serum, and increased cellular immune responses to stimulation with the Andong strain antigen compared to nonsupplemented pigs. In addition, higher FMD virus (FMDV) neutralizing antibody titers were detected in the germanium biotite-fed group than in the nonsupplemented group before the challenge. The findings of this study indicate that germanium biotite supplement might enhance immune responses to the FMD vaccine in pigs.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University , Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|