1
|
Liu Y, Wang X, Sheng Y, Jin H, Han L, Xu J, Fu Q, Liu J, Ji F, Ding H, Xu X, Wu K, Zhang P, Wang G. Recurrence of macular edema in patients with branch retinal vein occlusion: a proteomic study. BMC Ophthalmol 2024; 24:82. [PMID: 38388341 PMCID: PMC10882909 DOI: 10.1186/s12886-024-03359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Branch retinal vein occlusion (BRVO) is a common retinal vascular disease leading to severe vision loss and blindness. This study aimed to investigate and reveal the pathophysiological mechanisms underlying macular edema (ME) recurrence in patients with BRVO through a proteomic approach. METHODS We detected proteins in the aqueous humor of 14 untreated, four refractory, and four post-operative patients with BRVO-ME and 12 age-matched cataract controls using four-dimensional label-free proteomic and bioinformatics analyses. RESULTS In total, 84 proteins exhibited significant differential expression between the BRVO and control samples (fold change [FC] ≥ 1.2 and adjusted p-value < 0.05). Compared to the control group, 43 and 41 proteins were upregulated and downregulated, respectively, in the BRVO group. These proteins were involved in cell adhesion, visual perception, retina homeostasis, and platelet activation. Several significantly enriched signaling pathways included complement and coagulation cascades and platelet activation. In the protein-protein interaction networks generated using the search tool for retrieval of interacting genes (STRING), the fibrinogen alpha chain and fibrinogen beta chain constituted a tightly connected cluster. Many common protein expression trends, such as the fibrinogen alpha chain and fibrinogen beta chain, were observed in both the recurrent and refractory groups. Differentially expressed proteins in the two groups were involved in complement activation, acute-phase response, platelet activation, and platelet aggregation. Important signaling pathways include the complement and coagulation cascades, and platelet activation. Protein-protein interaction analysis suggested that the fibrinogen alpha chain and fibrinogen beta chain constituted a tightly connected cluster. The expression of some differentially expressed proteins shared by the BRVO and the recurrent and refractory groups was reversed in the post-operative group. CONCLUSIONS Our study is the first to analyze the proteomics of recurrent, refractory, and post-operative groups treated for BRVO-ME, and may potentially provide novel therapeutic interventions for the recurrence of ME.
Collapse
Affiliation(s)
- Yin Liu
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Xiaohu Wang
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Yonghong Sheng
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Haili Jin
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Linfeng Han
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Jun Xu
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Qingqing Fu
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Jing Liu
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Feng Ji
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - He Ding
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - Xiaochen Xu
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China
| | - KunChao Wu
- Department of Ophthalmology, First People's Hospital of Guiyang, Guiyang, China.
| | - Pengfei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| | - Guoping Wang
- Wuhu Eye Hospital, No. 378, Santan Road, Yijiang District, Wuhu, Anhui Province, 241000, China.
| |
Collapse
|
2
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Biswas A, Choudhury AD, Agrawal S, Bisen AC, Sanap SN, Verma SK, Kumar M, Mishra A, Kumar S, Chauhan M, Bhatta RS. Recent Insights into the Etiopathogenesis of Diabetic Retinopathy and Its Management. J Ocul Pharmacol Ther 2024; 40:13-33. [PMID: 37733327 DOI: 10.1089/jop.2023.0068] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Purpose: Diabetic retinopathy (DR) is a microvascular retinal disease associated with chronic diabetes mellitus, characterized by the damage of blood vessels in the eye. It is projected to become the leading cause of blindness, given the increasing burden of the diabetic population worldwide. The diagnosis and management of DR pose significant challenges for physicians because of the involvement of multiple biochemical pathways and the complexity of ocular tissues. This review aims to provide a comprehensive understanding of the molecular pathways implicated in the pathogenesis of DR, including the polyo pathway, hexosamine pathway, protein kinase C (PKC), JAK/STAT signaling pathways, and the renin-angiotensin system (RAS). Methods: Academic databases such as PubMed, Scopus, Google Scholar and Web of Science was systematically searched using a carefully constructed search strategy incorporating keywords like "Diabetic Retinopathy," "Molecular Pathways," "Pharmacological Treatments," and "Clinical Trials" to identify relevant literature for the comprehensive review. Results: In addition to activating other inflammatory cascades, these pathways contribute to the generation of oxidative stress within the retina. Furthermore, it aims to explore the existing pharmacotherapy options available for the treatment of DR. In addition to conventional pharmacological therapies such as corticosteroids, antivascular endothelial growth factors, and nonsteroidal anti-inflammatory drugs (NSAIDs), this review highlights the potential of repurposed drugs, phyto-pharmaceuticals, and novel pipeline drugs currently undergoing various stages of clinical trials. Conclusion: Overall, this review serves as a technical exploration of the complex nature of DR, highlighting both established and emerging molecular pathways implicated in its pathogenesis. Furthermore, it delves into the available pharmacological treatments, as well as the promising repurposed drugs, phyto-pharmaceuticals, and novel drugs currently being evaluated in clinical trials, with a focus on their specific mechanisms of action.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mridula Chauhan
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
4
|
Nashine S, Kenney MC. Effects of Humanin G (HNG) on angiogenesis and neurodegeneration markers in Age-related Macular Degeneration (AMD). Mitochondrion 2024; 74:101818. [PMID: 38029849 DOI: 10.1016/j.mito.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Advanced stages of Age-related Macular Degeneration (AMD) are characterized by retinal neurodegeneration and aberrant angiogenesis, and mitochondrial dysfunction contributes to the pathogenesis of AMD. In this study, we tested the hypothesis that Humanin G (HNG), a cytoprotective mitochondrial-derived peptide, positively regulates cell proliferation, cell death, and the protein levels of angiogenesis and neurodegeneration markers, in normal (control) and AMD RPE transmitochondrial cybrid cell lines. These normal and AMD RPE transmitochondrial cybrid cell lines had identical nuclei derived from mitochondria-deficient ARPE-19 cell line, but differed in mitochondrial DNA (mtDNA) content that was derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal (control) cybrid cell lines, and the Luminex XMAP multiplex assay was used to examine the protein levels of angiogenesis and neurodegeneration markers. Humanin G reduced Caspase-3/7-mediated apoptosis, improved cell proliferation, and normalized the protein levels of angiogenesis and neurodegeneration markers in AMD RPE cybrid cell lines, thereby suggesting Humanin G's positive regulatory role in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Motta G, Juliano L, Chagas JR. Human plasma kallikrein: roles in coagulation, fibrinolysis, inflammation pathways, and beyond. Front Physiol 2023; 14:1188816. [PMID: 37711466 PMCID: PMC10499198 DOI: 10.3389/fphys.2023.1188816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Human plasma kallikrein (PKa) is obtained by activating its precursor, prekallikrein (PK), historically named the Fletcher factor. Human PKa and tissue kallikreins are serine proteases from the same family, having high- and low-molecular weight kininogens (HKs and LKs) as substrates, releasing bradykinin (Bk) and Lys-bradykinin (Lys-Bk), respectively. This review presents a brief history of human PKa with details and recent observations of its evolution among the vertebrate coagulation proteins, including the relations with Factor XI. We explored the role of Factor XII in activating the plasma kallikrein-kinin system (KKS), the mechanism of activity and control in the KKS, and the function of HK on contact activation proteins on cell membranes. The role of human PKa in cell biology regarding the contact system and KSS, particularly the endothelial cells, and neutrophils, in inflammatory processes and infectious diseases, was also approached. We examined the natural plasma protein inhibitors, including a detailed survey of human PKa inhibitors' development and their potential market.
Collapse
Affiliation(s)
- Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Ramos H, Hernández C, Simó R, Simó-Servat O. Inflammation: The Link between Neural and Vascular Impairment in the Diabetic Retina and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24108796. [PMID: 37240138 DOI: 10.3390/ijms24108796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of diabetic retinopathy (DR) is complex, multifactorial and compromises all the elements of the retinal neurovascular unit (NVU). This diabetic complication has a chronic low-grade inflammatory component involving multiple inflammatory mediators and adhesion molecules. The diabetic milieu promotes reactive gliosis, pro-inflammatory cytokine production and leukocyte recruitment, which contribute to the disruption of the blood retinal barrier. The understanding and the continuous research of the mechanisms behind the strong inflammatory component of the disease allows the design of new therapeutic strategies to address this unmet medical need. In this context, the aim of this review article is to recapitulate the latest research on the role of inflammation in DR and to discuss the efficacy of currently administered anti-inflammatory treatments and those still under development.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
7
|
Santos FM, Ciordia S, Mesquita J, Cruz C, Sousa JPCE, Passarinha LA, Tomaz CT, Paradela A. Proteomics profiling of vitreous humor reveals complement and coagulation components, adhesion factors, and neurodegeneration markers as discriminatory biomarkers of vitreoretinal eye diseases. Front Immunol 2023; 14:1107295. [PMID: 36875133 PMCID: PMC9978817 DOI: 10.3389/fimmu.2023.1107295] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are leading causes of visual impairment and blindness in people aged 50 years or older in middle-income and industrialized countries. Anti-VEGF therapies have improved the management of neovascular AMD (nAMD) and proliferative DR (PDR), no treatment options exist for the highly prevalent dry form of AMD. Methods To unravel the biological processes underlying these pathologies and to find new potential biomarkers, a label-free quantitative (LFQ) method was applied to analyze the vitreous proteome in PDR (n=4), AMD (n=4) compared to idiopathic epiretinal membranes (ERM) (n=4). Results and discussion Post-hoc tests revealed 96 proteins capable of differentiating among the different groups, whereas 118 proteins were found differentially regulated in PDR compared to ERM and 95 proteins in PDR compared to dry AMD. Pathway analysis indicates that mediators of complement, coagulation cascades and acute phase responses are enriched in PDR vitreous, whilst proteins highly correlated to the extracellular matrix (ECM) organization, platelet degranulation, lysosomal degradation, cell adhesion, and central nervous system development were found underexpressed. According to these results, 35 proteins were selected and monitored by MRM (multiple reaction monitoring) in a larger cohort of patients with ERM (n=21), DR/PDR (n=20), AMD (n=11), and retinal detachment (n=13). Of these, 26 proteins could differentiate between these vitreoretinal diseases. Based on Partial least squares discriminant and multivariate exploratory receiver operating characteristic (ROC) analyses, a panel of 15 discriminatory biomarkers was defined, which includes complement and coagulation components (complement C2 and prothrombin), acute-phase mediators (alpha-1-antichymotrypsin), adhesion molecules (e.g., myocilin, galectin-3-binding protein), ECM components (opticin), and neurodegeneration biomarkers (beta-amyloid, amyloid-like protein 2).
Collapse
Affiliation(s)
- Fátima M. Santos
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Joana Mesquita
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - João Paulo Castro e Sousa
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Luís A. Passarinha
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Química/Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Cândida T. Tomaz
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
8
|
Bianco L, Arrigo A, Aragona E, Antropoli A, Berni A, Saladino A, Battaglia Parodi M, Bandello F. Neuroinflammation and neurodegeneration in diabetic retinopathy. Front Aging Neurosci 2022; 14:937999. [PMID: 36051309 PMCID: PMC9424735 DOI: 10.3389/fnagi.2022.937999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes and has been historically regarded as a microangiopathic disease. Now, the paradigm is shifting toward a more comprehensive view of diabetic retinal disease (DRD) as a tissue-specific neurovascular complication, in which persistently high glycemia causes not only microvascular damage and ischemia but also intraretinal inflammation and neuronal degeneration. Despite the increasing knowledge on the pathogenic pathways involved in DR, currently approved treatments are focused only on its late-stage vasculopathic complications, and a single molecular target, vascular endothelial growth factor (VEGF), has been extensively studied, leading to drug development and approval. In this review, we discuss the state of the art of research on neuroinflammation and neurodegeneration in diabetes, with a focus on pathophysiological studies on human subjects, in vivo imaging biomarkers, and clinical trials on novel therapeutic options.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Chatziralli I, Touhami S, Cicinelli MV, Agapitou C, Dimitriou E, Theodossiadis G, Theodossiadis P. Disentangling the association between retinal non-perfusion and anti-VEGF agents in diabetic retinopathy. Eye (Lond) 2022; 36:692-703. [PMID: 34408316 PMCID: PMC8956693 DOI: 10.1038/s41433-021-01750-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus (DM) and the leading cause of blindness in patients with DM. In the pathogenesis of DR, chronic hyperglycemia leads to biochemical and structural alterations in retinal blood vessels' wall, resulting in hyperpermeability and non-perfusion. Since vascular endothelial growth factor (VEGF) has been found to play a significant role in the pathogenesis of DR, this review sheds light on the effect of intravitreal anti-VEGF agents on retinal non-perfusion in patients with DR. Based on the existing literature, anti-VEGF agents have been shown to improve DR severity, although they cannot reverse retinal ischemia. The results of the published studies are controversial and differ based on the location of retinal non-perfusion, as well as the imaging modality used to assess retinal non-perfusion. In cases of macular non-perfusion, most of studies showed no change in both fundus fluorescein angiography (FFA) and optical coherence tomography (OCTA) in patients with DR treated with intravitreal anti-VEGF agents, while few studies reported worsening of non-perfusion with enlargement of foveal avascular zone (FAZ). Regarding peripheral ischemia, studies using wide-field-FFA demonstrated an improvement or stability in non-perfusion areas after anti-VEGF treatment. However, the use of wide-field-OCTA revealed no signs of re-perfusion of retinal vessels post anti-VEGF treatment. Further prospective studies with long follow-up and large sample size are still needed to draw solid conclusions.
Collapse
Affiliation(s)
- Irini Chatziralli
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Touhami
- grid.462844.80000 0001 2308 1657Department of Ophthalmology, Reference Center in Rare diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Maria Vittoria Cicinelli
- grid.15496.3f0000 0001 0439 0892School of Medicine, Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chrysa Agapitou
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dimitriou
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Theodossiadis
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theodossiadis
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Update on Current and Future Management for Diabetic Maculopathy. Ophthalmol Ther 2022; 11:489-502. [PMID: 35098441 PMCID: PMC8927493 DOI: 10.1007/s40123-022-00460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Diabetic macular edema (DME) remains the major cause of preventable blindness in the working-age population in developed countries, and screening programs are extremely important in the management of this complication of diabetic retinopathy. The introduction of modern imaging modalities and technological advances have facilitated both the early detection and the follow-up of patients with DME, particularly optical coherence tomography angiography and artificial intelligence. Intravitreal therapy is the gold standard treatment for DME, but not all patients respond equally to this therapy, and sometimes it is not easy to apply treatment protocols correctly; for these reasons, clinical practice results may differ from those of clinical trials in terms of vision gain. One approach has been to implement new treatment regimens, such as treat and extend, and new molecules and therapeutic targets are constantly being developed. The main goal of this review paper is to describe the current treatment options and management strategies for DME in Europe and to provide a brief oversight of the novel therapeutic options on the horizon.
Collapse
|
11
|
Markan A, Neupane S, Agrawal R, Gupta V. Newer therapeutic agents for retinal diseases. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashish Markan
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Swechya Neupane
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Sen Hospital, Novena, Singapore
| | - Vishali Gupta
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
12
|
Jiao J, Yu H, Yao L, Li L, Yang X, Liu L. Recent Insights into the Role of Gut Microbiota in Diabetic Retinopathy. J Inflamm Res 2021; 14:6929-6938. [PMID: 34938095 PMCID: PMC8687677 DOI: 10.2147/jir.s336148] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
The microbiome has become a hot issue in recent years. The composition, modification, alteration, and disturbance of gut microbiota were found to influence important physiological processes, including energy metabolism and microenvironmental homeostasis, and lead to various diseases, including obesity, type 2 diabetes mellitus and chronic kidney disease. Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus and one of the leading causes of blindness and vision impairment. The underlying mechanisms in DR pathogenesis remain limited. Recently, important insights have been made regarding possible connections between gut microbiome dysbiosis and ocular disease including DR, uveitis, glaucoma, and age-related macular degeneration, and the concept of a "microbiota-gut-retina axis" has been put forward. Hence, we reviewed current understanding of the relationship between DR and gut microbiota. We summarized potential pathophysiological mechanisms that contribute to the role of the gut microbiota on DR, including hyperglycemia, anti-diabetes drugs, microbial metabolites, and inflammatory properties. We aimed to find novel effective therapeutic options to prevent the onset and development of DR.
Collapse
Affiliation(s)
- Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, Liaoning, 110024, People's Republic of China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Lihua Li
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, People's Republic of China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510120, People's Republic of China
| |
Collapse
|
13
|
Triggianese P, Di Marino M, Nesi C, Greco E, Modica S, Chimenti MS, Conigliaro P, Mancino R, Nucci C, Cesareo M. Subclinical Signs of Retinal Involvement in Hereditary Angioedema. J Clin Med 2021; 10:jcm10225415. [PMID: 34830697 PMCID: PMC8618365 DOI: 10.3390/jcm10225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
To explore retinal abnormalities using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) in a highly selective cohort of patients with type I hereditary angioedema (HAE). This prospective case-control study included 40 type I HAE patients and 40 age-/sex-matched healthy subjects (HC). All participants underwent SD-OCT-scanning of retinal posterior pole (PP), peripapillary retinal nerve fiber layer (pRNFL), and optic nerve head (ONH). Superficial/deep capillary density was analyzed by OCT-A. A total of 80 eyes from 40 HAE and 40 eyes from HC were evaluated. The pRNFL was thicker in HAE than in HC in nasal superior (p < 0.0001) and temporal quadrants (p = 0.0005 left, p = 0.003 right). The ONH thickness in HAE patients was greater than in HC in the nasal (p = 0.008 left, p = 0.01 right), temporal (p = 0.0005 left, p = 0.003 right), temporal inferior (p = 0.007 left, p = 0.0008 right), and global (p = 0.005 left, p = 0.007 right) scans. Compared to HC, HAE showed a lower capillary density in both superficial (p = 0.001 left, p = 0.006 right) and deep (p = 0.008 left, p = 0.004 right) whole images, and superficial (p = 0.03 left) and deep parafoveal (p = 0.007 left, p = 0.005 right) areas. Our findings documented subclinical retinal abnormalities in type I HAE, supporting a potential role of the retinal assessment by SD-OCT/OCT-A as a useful tool in the comprehensive care of HAE patients.
Collapse
Affiliation(s)
- Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Matteo Di Marino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +39-389-11-24-316
| | - Carolina Nesi
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Stella Modica
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00173 Rome, Italy; (P.T.); (E.G.); (S.M.); (M.S.C.); (P.C.)
| | - Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00173 Rome, Italy; (C.N.); (R.M.); (C.N.); (M.C.)
| |
Collapse
|
14
|
Szymanska M, Mahmood D, Yap TE, Cordeiro MF. Recent Advancements in the Medical Treatment of Diabetic Retinal Disease. Int J Mol Sci 2021; 22:ijms22179441. [PMID: 34502350 PMCID: PMC8430918 DOI: 10.3390/ijms22179441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinal disease remains one of the most common complications of diabetes mellitus (DM) and a leading cause of preventable blindness. The mainstay of management involves glycemic control, intravitreal, and laser therapy. However, intravitreal therapy commonly requires frequent hospital visits and some patients fail to achieve a significant improvement in vision. Novel and long-acting therapies targeting a range of pathways are warranted, while evidence to support optimal combinations of treatments is currently insufficient. Improved understanding of the molecular pathways involved in pathogenesis is driving the development of therapeutic agents not only targeting visible microvascular disease and metabolic derangements, but also inflammation and accelerated retinal neurodegeneration. This review summarizes the current and emerging treatments of diabetic retinal diseases and provides an insight into the future of managing this important condition.
Collapse
Affiliation(s)
- Maja Szymanska
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Daanyaal Mahmood
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Maria F. Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence:
| |
Collapse
|
15
|
Нероев ВВ, Чеснокова НБ, Кост ОА, Охоцимская ТД, Павленко ТА, Безнос ОВ, Биневский ПВ, Лисовская ОА. [Bradykinin and angiotensin-converting enzyme in serum of patients with diabetic retinopathy and the prognosis of diabetic macular edema development (pilot study)]. PROBLEMY ENDOKRINOLOGII 2021; 67:13-19. [PMID: 34533010 PMCID: PMC9753801 DOI: 10.14341/probl12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Diabetic macular edema (DME) is a microvascular complication of diabetic retinopathy. One of the key roles in the pathogenesis of DME may belong to the components of rennin-angiotensin and kallikrein-kinin systems: bradykinin (Bk) and angiotensin-converting enzyme (ACE). PURPOSE To determine the Bk and ACE concentration and ACE activity in serum of patients with proliferative diabetic retinopathy (PDR) and to estimate the significance of these parameters for the early diagnostic and prognosis of DMO. MATERIALS AND METHODS Serum was collected from the 2 groups of patients with II type diabetes. Group I (n=9) had DME, group II (n=27) had PDR without DME. Control group (n=14) consisted of adult volonteers without diabetes and ophthalmic diseases. Concentration of Bk and ACE was measured using ELISA kits, ACE activity was determined enzymatically with specific fluorogenic substrate. RESULTS Concentration of Bk in serum of patients without DME did not differ from one in controls (12,00 (9,70; 12,40) pg/ml) while all patients with DME had Bk level of 14,69 (13,68; 16,78) pg/ml that was significantly higher (p<0,01). In patients without DME ACE concentration (88,60 (77,30; 97,45) ng/ml) and ACE activity (6,8 (5,1;7,1) nmol/min·ml) were higher than normal (p<0,01) while in the case of DME concentration of ACE increased (77,36 (70,24; 86,29 ng/ml, p<0,01) and activity remained normal. The Bk/ACE concentrations ratio decreased in patients without DME and increased in those having DME. CONCLUSION Patients with DME have increased Bk concentration along with nearly normal ACE concentration that indicate predominance of Bk synthesis over its degradation that may lead to the DME development. The Bk/ACE ratio decrease in patients with uncomplicated PDR and increase significantly in ones with DME. It means that determination of Bk in serum of patients with PDR may be used for the prediction of DME development. The Bk/ACE concentrations ratio may be even more informative.
Collapse
Affiliation(s)
- В. В. Нероев
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - Н. Б. Чеснокова
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - О. А. Кост
- Московский государственный университет имени М.В.Ломоносова
| | - Т. Д. Охоцимская
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - Т. А. Павленко
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | - О. В. Безнос
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| | | | - О. А. Лисовская
- Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца
| |
Collapse
|
16
|
Chimenti MS, Triggianese P, Salandri G, Conigliaro P, Canofari C, Caso F, Costa L, Nucci C, Aiello F, Cesareo M, Perricone R. A Multimodal Eye Assessment in Psoriatic Arthritis Patients sine-Psoriasis: Evidence for a Potential Association with Systemic Inflammation. J Clin Med 2020; 9:jcm9030719. [PMID: 32155870 PMCID: PMC7141327 DOI: 10.3390/jcm9030719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Ocular involvement in Psoriatic Arthritis (PsA) patients is mainly associated with uveitis but there remains a paucity of data on dry eye and retinal abnormalities. We aimed to analyze dry eye and subclinical retinal abnormalities in a cohort of PsA patients sine-psoriasis (PsO). Methods: PsA patients sine-PsO were enrolled. Best-corrected-visual-acuity, ocular-surface-disease-index (OSDI), Schirmer test, tear film breakup-time, standard-automated-perimetry (SAP, mean deviation—MD, pattern standard deviation—PSD), fundus-perimetry (FP), and spectral-domain-optical-coherence-tomography (SD-OCT) were performed. Results: A total of 80 eyes from 40 PsA patients with moderate-severe disease activity, and 70 eyes from 35 healthy control (HC) were evaluated. Higher dry eye prevalence occurred in PsA than HC (p < 0.0001). ESR was positively related with OSDI (p < 0.001) and negatively related with Schirmer (p = 0.007). In PsA, SAP registered higher MD (p < 0.0001) and higher PSD (p = 0.005) in comparison with HC. PSD resulted positively correlated with ESR (p = 0.04) and CRP (p = 0.01), while MD showed a negative correlation with CRP (p = 0.01). Both FP mean differential sensitivity and mean defect were lower in PsA then HC (p < 0.0001). In PsA, FP differential sensitivity was directly related with cumulative steroids (p = 0.02). Conclusions: In PsA patients sine-PsO, dry eye and subclinical abnormalities in visual functions occurred being potentially related to systemic inflammation.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Salandri
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Canofari
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Aiello
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-333-258-1755
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
17
|
Mansour SE, Browning DJ, Wong K, Flynn HW, Bhavsar AR. The Evolving Treatment of Diabetic Retinopathy. Clin Ophthalmol 2020; 14:653-678. [PMID: 32184554 PMCID: PMC7061411 DOI: 10.2147/opth.s236637] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose To review the current therapeutic options for the management of diabetic retinopathy (DR) and diabetic macular edema (DME) and examine the evidence for integration of laser and pharmacotherapy. Methods A review of the PubMed database was performed using the search terms diabetic retinopathy, diabetic macular edema, neovascularization, laser photocoagulation, intravitreal injection, vascular endothelial growth factor (VEGF), vitrectomy, pars plana vitreous surgery, antiangiogenic therapy. With additional cross-referencing, this yielded 835 publications of which 301 were selected based on content and relevance. Results Many recent studies have evaluated the pharmacological, laser and surgical therapeutic strategies for the treatment and prevention of DR and DME. Several newer diagnostic systems such as optical coherence tomography (OCT), microperimetry, and multifocal electroretinography (mfERG) are also assisting in further refinements in the staging and classification of DR and DME. Pharmacological therapies for both DR and DME include both systemic and ocular agents. Systemic agents that promote intensive glycemic control, control of dyslipidemia and antagonists of the renin-angiotensin system demonstrate beneficial effects for both DR and DME. Ocular therapies include anti-VEGF agents, corticosteroids and nonsteroidal anti-inflammatory drugs. Laser therapy, both as panretinal and focal or grid applications continue to be employed in management of DR and DME. Refinements in laser devices have yielded more tissue-sparing (subthreshold) modes in which many of the benefits of conventional continuous wave (CW) lasers can be obtained without the adverse side effects. Recent attempts to lessen the burden of anti-VEGF injections by integrating laser therapy have met with mixed results. Increasingly, vitreoretinal surgical techniques are employed for less advanced stages of DR and DME. The development and use of smaller gauge instrumentation and advanced anesthesia agents have been associated with a trend toward earlier surgical intervention for diabetic retinopathy. Several novel drug delivery strategies are currently being examined with the goal of decreasing the therapeutic burden of monthly intravitreal injections. These fall into one of the five categories: non-biodegradable polymeric drug delivery systems, biodegradable polymeric drug delivery systems, nanoparticle-based drug delivery systems, ocular injection devices and with sustained release refillable devices. At present, there remains no one single strategy for the management of the particular stages of DR and DME as there are many options that have not been rigorously tested through large, randomized, controlled clinical trials. Conclusion Pharmacotherapy, both ocular and systemic, will be the primary mode of intervention in the management of DR and DME in many cases when cost and treatment burden are less constrained. Conventional laser therapy has become a secondary intervention in these instances, but remains a first-line option when cost and treatment burden are more constrained. Results with subthreshold laser appear promising but will require more rigorous study to establish its role as adjunctive therapy. Evidence to support an optimal integration of the various treatment options is lacking. Central to the widespread adoption of any therapeutic regimen for DR and DME is substantiation of safety, efficacy, and cost-effectiveness by a body of sound clinical trials.
Collapse
Affiliation(s)
- Sam E Mansour
- George Washington University, Washington, DC, USA.,Virginia Retina Center, Warrenton, VA, 20186, USA
| | - David J Browning
- Charlotte Eye Ear Nose & Throat Associates, Charlotte, NC 28210, USA
| | - Keye Wong
- Retina Associates of Sarasota, Sarasota, FL 34233, USA
| | - Harry W Flynn
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | | |
Collapse
|
18
|
Xie Z, Li Z, Shao Y, Liao C. Discovery and development of plasma kallikrein inhibitors for multiple diseases. Eur J Med Chem 2020; 190:112137. [PMID: 32066009 DOI: 10.1016/j.ejmech.2020.112137] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 01/06/2023]
Abstract
Plasma kallikrein (PKal) belongs to the family of trypsin-like serine proteases. The expression of PKal is associated with multiple physiological systems or pathways such as coagulation pathway, platelet aggregation process, kallikrein-kinin system, renin-angiotensin system and complement pathway. On the basis of PKal's multiple physiological functions, it has been considered as a potential target for several diseases including hereditary angioedema, microvascular complications of diabetes mellitus and cerebrovascular disease. Up to now, many PKal inhibitors have been identified and a few of them have reached clinical trials or market. This review summarizes the development of small molecule and peptide PKal inhibitors having different scaffolds and discusses their structure-activity relationship and selectivity. We hope this review facilitates a comprehensive understanding of the types of PKal inhibitors developed to tackle different manifestations of PKal-associated diseases.
Collapse
Affiliation(s)
- Zhouling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Zhen Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Yanruisheng Shao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
19
|
Hachana S, Fontaine O, Sapieha P, Lesk M, Couture R, Vaucher E. The effects of anti-VEGF and kinin B 1 receptor blockade on retinal inflammation in laser-induced choroidal neovascularization. Br J Pharmacol 2020; 177:1949-1966. [PMID: 31883121 DOI: 10.1111/bph.14962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Age-related macular degeneration (AMD) is a complex neurodegenerative disease treated by anti-VEGF intravitreal injections. As inflammation is potentially involved in retinal degeneration, the pro-inflammatory kallikrein-kinin system is a possible alternative pharmacological target. Here, we investigated the effects of anti-VEGF and anti-B1 receptor treatments on the inflammatory mechanisms in a rat model of choroidal neovascularization (CNV). EXPERIMENTAL APPROACH Immediately after laser-induced CNV, Long-Evans rats were treated by eye-drop application of a B1 receptor antagonist (R-954) or by intravitreal injection of B1 receptor siRNA or anti-VEGF antibodies. Effects of treatments on gene expression of inflammatory mediators, CNV lesion regression and integrity of the blood-retinal barrier was measured 10 days later in the retina. B1 receptor and VEGF-R2 cellular localization was assessed. KEY RESULTS The three treatments significantly inhibited the CNV-induced retinal changes. Anti-VEGF and R-954 decreased CNV-induced up-regulation of B1 and B2 receptors, TNF-α, and ICAM-1. Anti-VEGF additionally reversed up-regulation of VEGF-A, VEGF-R2, HIF-1α, CCL2 and VCAM-1, whereas R-954 inhibited gene expression of IL-1β and COX-2. Enhanced retinal vascular permeability was abolished by anti-VEGF and reduced by R-954 and B1 receptor siRNA treatments. Leukocyte adhesion was impaired by anti-VEGF and B1 receptor inhibition. B1 receptors were found on astrocytes and endothelial cells. CONCLUSION AND IMPLICATIONS B1 receptor and VEGF pathways were both involved in retinal inflammation and damage in laser-induced CNV. The non-invasive, self-administration of B1 receptor antagonists on the surface of the cornea by eye drops might be an important asset for the treatment of AMD.
Collapse
Affiliation(s)
- Soumaya Hachana
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Olivier Fontaine
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Mark Lesk
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
20
|
Triggianese P, Cesareo M, Guarino MD, Conigliaro P, Chimenti MS, Cedola F, Mazzeo C, Nucci C, Perricone R. Evaluation of retinal microvascular perfusion in hereditary angioedema: a case-control study. Orphanet J Rare Dis 2020; 15:20. [PMID: 31952522 PMCID: PMC6969431 DOI: 10.1186/s13023-019-1263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022] Open
Abstract
Evidence supports that hereditary angioedema (HAE) may be considered as a paroxysmal permeability disorder with defective but self-limiting endothelial barrier dysfunction. A potential subclinical abnormal vascular permeability at retinal capillaries could induce damage resulting in retinopathy. We aimed at exploring for the first time the presence of microangiopathy at retinal level from a highly selective cohort of patients with HAE due to C1 esterase inhibitor protein (C1INH) deficiency (type I). We conducted a pilot, prospective, case-control study including 20 type I HAE patients and 20 age−/sex-matched healthy controls (HC). All participants underwent standard ophthalmological examination including visual fields. Superficial and deep capillary plexi in the retina were analyzed by using new optical coherence tomography angiography (OCT-A). A total of 40 eyes from 20 HAE patients and 20 eyes from HC were evaluated. Perimetric indices of visual field were slightly worse in HAE than in controls. OCT-angiograms documented in HAE patients a lower retinal capillary density in both superficial and deep scans and a higher retinal thickness compared to healthy eyes. Our findings firstly documented subclinical abnormalities in retinal microvascular network in type I HAE patients that might be associated with early subtle functional changes. This preliminary evidence supports the hypothesis of a recurrent endothelial barrier failure at retinal level in HAE patients potentially resulting in chronic damage.
Collapse
Affiliation(s)
- Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Rome, Italy.
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Domenica Guarino
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Rome, Italy
| | - Francesca Cedola
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Rome, Italy
| | - Caterina Mazzeo
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Song DY, Gu JY, Yoo HJ, Kim YI, Nam-Goong IS, Kim ES, Kim HK. Activation of Factor XII and Kallikrein-Kinin System Combined with Neutrophil Extracellular Trap Formation in Diabetic Retinopathy. Exp Clin Endocrinol Diabetes 2019; 129:560-565. [PMID: 31426112 DOI: 10.1055/a-0981-6023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND In diabetic retinopathy (DR), neutrophil extracellular traps (NET) and kallikrein-kinin system are considered as contributing factors. However, the detail activation mechanisms has not been fully understood. Since the NET could provide negative-charged surface for factor XII activation and the activated factor XII (XIIa) can initiate kallikrein-kinin system, this study investigated whether patients with DR show activation of NET, factor XII and kallikrein-kinin system. METHODS The markers related to NET (DNA-histone complex) and kallikrein-kinin system (high-molecular-weight kininogen, prekallikrein, bradykinin) and factor XIIa were measured in 253 patients with diabetes. To access ex vivo effect of glucose, DNA-histone complex and factor XIIa were measured in whole blood stimulated by glucose. RESULTS The circulating level of DNA-histone complex and factor XIIa were significantly higher in patients with DR than those without DR. In logistic regression analysis, DNA-histone complex, factor XIIa, and high-molecular-weight kininogen were the risk factors of DR. In recursive partitioning analysis, among patients with diabetes duration less than 10 years, patients with high level of DNA-histone complex (>426 AU) showed high risk of DR. In ex vivo experiment, glucose significantly elevated both DNA-histone complex and factor XIIa. CONCLUSION Our findings suggest that activation of factor XII and kallikrein-kinin system combined with NET formation actively occur in patients with DR and circulating levels of DNA-histone complex, factor XIIa and HMWK can be potential biomarkers to estimate the risk of DR. Strategies against factor XII activation may be beneficial to inhibit DR.
Collapse
Affiliation(s)
- Da Young Song
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Il Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Il Sung Nam-Goong
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun Sook Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Gucciardo E, Loukovaara S, Salven P, Lehti K. Lymphatic Vascular Structures: A New Aspect in Proliferative Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19124034. [PMID: 30551619 PMCID: PMC6321212 DOI: 10.3390/ijms19124034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common diabetic microvascular complication and major cause of blindness in working-age adults. According to the level of microvascular degeneration and ischemic damage, DR is classified into non-proliferative DR (NPDR), and end-stage, proliferative DR (PDR). Despite advances in the disease etiology and pathogenesis, molecular understanding of end-stage PDR, characterized by ischemia- and inflammation-associated neovascularization and fibrosis, remains incomplete due to the limited availability of ideal clinical samples and experimental research models. Since a great portion of patients do not benefit from current treatments, improved therapies are essential. DR is known to be a complex and multifactorial disease featuring the interplay of microvascular, neurodegenerative, metabolic, genetic/epigenetic, immunological, and inflammation-related factors. Particularly, deeper knowledge on the mechanisms and pathophysiology of most advanced PDR is critical. Lymphatic-like vessel formation coupled with abnormal endothelial differentiation and progenitor cell involvement in the neovascularization associated with PDR are novel recent findings which hold potential for improved DR treatment. Understanding the underlying mechanisms of PDR pathogenesis is therefore crucial. To this goal, multidisciplinary approaches and new ex vivo models have been developed for a more comprehensive molecular, cellular and tissue-level understanding of the disease. This is the first step to gain the needed information on how PDR can be better evaluated, stratified, and treated.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Ophthalmology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Petri Salven
- Department of Pathology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, SE-17165 Stockholm, Sweden.
| |
Collapse
|
23
|
Lehto M, Groop PH. The Gut-Kidney Axis: Putative Interconnections Between Gastrointestinal and Renal Disorders. Front Endocrinol (Lausanne) 2018; 9:553. [PMID: 30283404 PMCID: PMC6157406 DOI: 10.3389/fendo.2018.00553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is a devastating condition associated with increased morbidity and premature mortality. The etiology of DKD is still largely unknown. However, the risk of DKD development and progression is most likely modulated by a combination of genetic and environmental factors. Patients with autoimmune diseases, like type 1 diabetes, inflammatory bowel disease, and celiac disease, share some genetic background. Furthermore, gastrointestinal disorders are associated with an increased risk of kidney disease, although the true mechanisms have still to be elucidated. Therefore, the principal aim of this review is to evaluate the impact of disturbances in the gastrointestinal tract on the development of renal disorders.
Collapse
Affiliation(s)
- Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- *Correspondence: Markku Lehto
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Catanzaro OL, Capponi JA, Di Martino I, Labal ES, Sirois P. Oxidative stress in the optic nerve and cortical visual area of steptozotocin-induced diabetic Wistar rats: Blockade with a selective bradykinin B 1 receptor antagonist. Neuropeptides 2017; 66:97-102. [PMID: 29089149 DOI: 10.1016/j.npep.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/07/2017] [Accepted: 10/19/2017] [Indexed: 01/13/2023]
Abstract
The role of bradykinin B1 receptors on the oxidative stress as measured by the levels of Na+/K+ ATPase activity, malondialdehyde (MDA) and glutathione (GSH) in male Wistar rat optic nerve and visual cortex area 1 and 4weeks after STZ treatment was studied. Rats were divided into 4 groups (n=6-7): 1. Controls (non-diabetics); 2. Diabetics (65mg/kg streptozotocin, STZ); 3. Diabetics injected with B1 antagonist R-954 (2mg/Kg) during the last 3days of a one week period; 4. Diabetics injected with B1 antagonist R-954 (2mg/Kg) during the last 3days of a 4week period. The results showed that plasma glucose levels increased by up to 4 fold in diabetic rats 1 or 4weeks following the STZ treatment. R-954 treatment did significantly decrease blood glucose levels. Levels of MDA was increased in the plasma of the 1 and 4week diabetic animals whereas the GSH levels were decreased. Both markers returned to normal following R-954 treatment. Na+/K+ ATPase activity significantly decreased in the optic nerve and visual cortex of diabetic rats at 1 and 4weeks but returned to normal following R-954 treatment. MDA levels increased markedly at 1 and 4weeks compared with control levels in the optic nerve but slightly in the visual cortex and returned to control levels in both tissues following R-954 treatment. GSH levels decreased in both tissues at 1 and 4weeks compared with control levels. Following administration of the selective BKB1R antagonist R-954, the levels of GSH returned to normal in both tissues of the 1 and 4week diabetic animals. These results showed that the inducible BKB1 receptors are associated with the oxidative stress in the optic nerve and cortical visual area of diabetic rats and suggested that BKB1-R antagonist R-954 could have a beneficial role in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Orlando L Catanzaro
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina; Escuela de Medicina y Odontologia -USAL, Buenos Aires, Argentina.
| | - Jorgelina Aira Capponi
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Irene Di Martino
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Emilio S Labal
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Pierre Sirois
- CHUL Research Center, Laval University, Québec, Canada
| |
Collapse
|