1
|
Cai J, Xiao L, Liu J, Wang D, Zhou Y, Liao Z, Chen G. BPIFB1, Serving as a Downstream Effector of EBV-miR-BART4, Blocks Immune Escape of Nasopharyngeal Carcinoma via Inhibiting PD-L1 Expression. Biochem Genet 2024:10.1007/s10528-024-10719-3. [PMID: 38467887 DOI: 10.1007/s10528-024-10719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common tumors of head and neck in the Southeast Asia. PD-L1-dependent immune escape plays a critical role involved in NPC development. BPIFB1 has previously reported to take tumor-suppressive actions on NPC cell proliferation and migration. Nonetheless, the function of BPIFB1 in immune escape remains largely elusive. Expression pattern on mRNA and protein levels of target genes in NPC patients' samples and cell lines were examined by qRT-PCR, western blot, and immunohistochemistry staining, respectively. The assessment of CD8+ T-cell apoptosis and expression was determined by flow cytometry. Molecular interactions were verified using chromatin immunoprecipitation (ChIP) and luciferase reporter assay. BPIFB1 was downregulated in NPC tumor tissues, exhibiting a negative correlation of PD-L1. Overexpression of BPIFB1 significantly inhibited the expression of PD-L1, suppressing the apoptosis and enhancing the expression of CD8+ T cells. Mechanistically, BPIFB1 was found to repress the expression of STAT1, which was identified to be an upstream activator of PD-L1. Furthermore, the EBV-encoded miR-BART4 overexpressed in NPC cells could directly target and inhibit BPIFB1. This study provided a comprehensive understanding of the molecular mechanism for the upstream and downstream pathway of BPIFB1 related with immune escape, indicating a novel approach for the treatment of NPC.
Collapse
Affiliation(s)
- Jiaodi Cai
- Department of Pathology, The Affiliated Changsha Hospital of Hunan Normal University (The Fourth Hospital of Changsha), No. 70, Lushan South Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Li Xiao
- Department of Pathology, The Affiliated Changsha Hospital of Hunan Normal University (The Fourth Hospital of Changsha), No. 70, Lushan South Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Jiao Liu
- Department of Pathology, The Affiliated Changsha Hospital of Hunan Normal University (The Fourth Hospital of Changsha), No. 70, Lushan South Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Dan Wang
- Cancer Research Institute, Central South University, Changsha, 410006, Hunan, People's Republic of China
| | - Yadong Zhou
- Department of Pathology, The Affiliated Changsha Hospital of Hunan Normal University (The Fourth Hospital of Changsha), No. 70, Lushan South Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Zhiming Liao
- Department of Pathology, The Affiliated Changsha Hospital of Hunan Normal University (The Fourth Hospital of Changsha), No. 70, Lushan South Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China
| | - Guoqun Chen
- Department of Pathology, The Affiliated Changsha Hospital of Hunan Normal University (The Fourth Hospital of Changsha), No. 70, Lushan South Road, Yuelu District, Changsha, 410006, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Parisi F, Fonti N, Millanta F, Freer G, Pistello M, Poli A. Exploring the link between viruses and cancer in companion animals: a comprehensive and comparative analysis. Infect Agent Cancer 2023; 18:40. [PMID: 37386451 DOI: 10.1186/s13027-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, it is estimated that 15% of human neoplasms globally are caused by infectious agents, with new evidence emerging continuously. Multiple agents have been implicated in various forms of neoplasia, with viruses as the most frequent. In recent years, investigation on viral mechanisms underlying tumoral transformation in cancer development and progression are in the spotlight, both in human and veterinary oncology. Oncogenic viruses in veterinary medicine are of primary importance not only as original pathogens of pets, but also in the view of pets as models of human malignancies. Hence, this work will provide an overview of the main oncogenic viruses of companion animals, with brief notes of comparative medicine.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
3
|
Viral Encoded miRNAs in Tumorigenesis: Theranostic Opportunities in Precision Oncology. Microorganisms 2022; 10:microorganisms10071448. [PMID: 35889167 PMCID: PMC9321719 DOI: 10.3390/microorganisms10071448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
About 15% of all human cancers have a viral etiology. Although progress has been made, understanding the viral oncogenesis and associated molecular mechanisms remain complex. The discovery of cellular miRNAs has led to major breakthroughs. Interestingly, viruses have also been discovered to encode their own miRNAs. These viral, small, non-coding miRNAs are also known as viral-miRNAs (v-miRNAs). Although the function of v-miRNAs largely remains to be elucidated, their role in tumorigenesis cannot be ignored. V-miRNAs have also been shown to exploit the cellular machinery to benefit viral replication and survival. Although the discovery of Hepatitis C virus (HCV), and its viral miRNAs, is a work in progress, the existence of HPV-, EBV-, HBV-, MCPyV- and KSHV-encoded miRNA has been documented. V-miRNAs have been shown to target host factors to advance tumorigenesis, evade and suppress the immune system, and deregulate both the cell cycle and the apoptotic machinery. Although the exact mechanisms of v-miRNAs-induced tumorigenesis are still unclear, v-miRNAs are active role-players in tumorigenesis, viral latency and cell transformation. Furthermore, v-miRNAs can function as posttranscriptional gene regulators of both viral and host genes. Thus, it has been proposed that v-miRNAs may serve as diagnostic biomarkers and therapeutic targets for cancers with a viral etiology. Although significant challenges exist in their clinical application, emerging reports demonstrate their potent role in precision medicine. This review will focus on the roles of HPV-, HCV-, EBV-, HBV-, MCPyV-, and KSHV-produced v-miRNAs in tumorigenesis, as effectors in immune evasion, as diagnostic biomarkers and as novel anti-cancer therapeutic targets. Finally, it will discuss the challenges and opportunities associated with v-miRNAs theranostics in precision oncology.
Collapse
|
4
|
Wu Q, Han T, Sheng X, Zhang N, Wang P. Downregulation of EB virus miR-BART4 inhibits proliferation and aggressiveness while promoting radiosensitivity of nasopharyngeal carcinoma. Biomed Pharmacother 2018; 108:741-751. [DOI: 10.1016/j.biopha.2018.08.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/10/2023] Open
|
5
|
Rayner S, Bruhn S, Vallhov H, Andersson A, Billmyre RB, Scheynius A. Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Sci Rep 2017; 7:39742. [PMID: 28051166 PMCID: PMC5209728 DOI: 10.1038/srep39742] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022] Open
Abstract
Malassezia is the dominant fungus in the human skin mycobiome and is associated with common skin disorders including atopic eczema (AE)/dermatitis. Recently, it was found that Malassezia sympodialis secretes nanosized exosome-like vesicles, designated MalaEx, that carry allergens and can induce inflammatory cytokine responses. Extracellular vesicles from different cell-types including fungi have been found to deliver functional RNAs to recipient cells. In this study we assessed the presence of small RNAs in MalaEx and addressed if the levels of these RNAs differ when M. sympodialis is cultured at normal human skin pH versus the elevated pH present on the skin of patients with AE. The total number and the protein concentration of the released MalaEx harvested after 48 h culture did not differ significantly between the two pH conditions nor did the size of the vesicles. From small RNA sequence data, we identified a set of reads with well-defined start and stop positions, in a length range of 16 to 22 nucleotides consistently present in the MalaEx. The levels of small RNAs were not significantly differentially expressed between the two different pH conditions indicating that they are not influenced by the elevated pH level observed on the AE skin.
Collapse
Affiliation(s)
- Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Sören Bruhn
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital Stockholm, Sweden
| | - Helen Vallhov
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Anna Andersson
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital Stockholm, Sweden
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| |
Collapse
|
6
|
Abstract
Epstein-Barr virus (EBV) infection is a common feature of B cell lymphoproliferative disorders (LPDs), including diffuse large B cell lymphoma. Approximately 10 % of DLBCLs are EBV-positive, with the highest incidence in immunocompromised and elderly patients. Here, we review the clinical, genetic, and pathologic characteristics of DLBCL and discuss the molecular role of EBV in lymphoma tumorigenesis. Using EBV-positive DLBCL of the elderly as a model, we describe the key features of EBV-positive DLBCL. Studies of EBV-positive DLBCL of the elderly demonstrate that EBV-positive DLBCL has a distinct biology, related to both viral and host factors. The pathogenic mechanisms noted in EBV-positive DLBCL of the elderly, including enhanced NFκB activity, are likely to be a generalizable feature of EBV-positive DLBCL. Therefore, we review how this information might be used to target the EBV or its host response for the development of novel treatment strategies.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Since the discovery of Epstein-Barr virus in Burkitt's lymphoma 50 years ago, only one other virus, namely Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8, has been confirmed to be a direct cause of B-cell lymphoma. Here we will review the evidence for Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus as causal lymphoma agents. RECENT FINDINGS A deeper understanding of specific mechanisms by which Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus cause B-cell lymphomas has been acquired over the past years, in particular with respect to viral protein interactions with host cell pathways, and microRNA functions. Specific therapies based on knowledge of viral functions are beginning to be evaluated, mostly in preclinical models. SUMMARY Understanding the causal associations of specific infectious agents with certain B-cell lymphomas has allowed more accurate diagnosis and classification. A deeper knowledge of the specific mechanisms of transformation is essential to begin assessing whether virus-targeted treatment modalities may be used in the future.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
8
|
Bergallo M, Gambarino S, Martino S, Montin D, Montanari P, Galliano I, Tovo PA. Comparison of Two Available RNA Extraction Protocols for microRNA Amplification in Serum Samples. J Clin Lab Anal 2015; 30:277-83. [PMID: 25853736 DOI: 10.1002/jcla.21848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/23/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND microRNAs play a critical role in many biological processes such as cell proliferation and maturation, apoptosis, regulation of chronic inflammation and development of cancer. METHODS In this study is described a protocol for the isolation of RNA from serum and subsequent determination of miRNA expression levels using TaqMan-based MGB Real-Time PCR detection. RNA was extracted using two different isolation methods including available kits RNAzol and a modified RNAzol protocol. In all cases, RNA was eluted in RNase free H2 O, kept frozen until analysis and the presence of contaminants assessed by NanoDrop spectrophotometry. RESULTS Higher RNA quantity was observed in RNAzol (378.8 ng/μl) vs RNAzol modified protocol (226.5 ng/μl) and a better performance in terms of RNA extraction yield and purity. Subsequently, measurements of endogenous miRNAs (RNU43), cellular miRNAs (mir155 and mir146a) and EBV miRNAs (mirBART2-5p, mirBART15 and mirBART22) were performed by RT-qPCR. CONCLUSION In contrast to the findings in terms of purity and quantity, the amplifiable RNA was more abundant using RNAzol modified protocol compared to not modified protocol.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy
| | - Stefano Gambarino
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy
| | - Silvana Martino
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy
| | - Davide Montin
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy
| | - Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Pan-viral-microRNA screening identifies interferon inhibition as a common function of diverse viruses. Proc Natl Acad Sci U S A 2015; 112:1856-61. [PMID: 25624489 DOI: 10.1073/pnas.1417891112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diverse viruses encode regulatory RNAs called microRNAs (miRNAs). Despite much progress, the functions of the majority of viral miRNAs remain unknown. Most previous studies have used biochemical methods to uncover targets of viral miRNAs, but it is unclear what fraction of these targets is functionally important. Here, we apply an alternative strategy based on the premise that assorted viral miRNAs will share functionality. Screening a library of >70 human viral miRNAs showed that three unrelated miRNAs from distantly related herpesviruses significantly inhibited IFN signaling. Strikingly, each of these miRNAs directly reduced expression of the cyclic AMP-responsive element-binding protein (CBP), which as part of the p300-CBP complex, mediates IFN signaling. We show that both 5' and 3' derivatives from Epstein-Barr virus (EBV) encoded miR-BART-18 precursor miRNA (pre-miRNA) and the orthologous pre-miRNA from Rhesus lymphocryptovirus contribute to reducing IFN signaling. Thus, through both convergent and divergent evolutionary mechanisms, varied herpesviral miRNAs share the ability to decrease IFN signaling. Restoring miR-BART-18 to cells infected with an EBV miRNA mutant conveyed a cellular growth advantage upon IFN treatment, and relevant miRNAs from other herpesviruses were able to complement this activity. Blocking miR-BART-18 function in an EBV(+) tumor cell line renders cells more susceptible to IFN-mediated effects. These findings provide a mechanism that can at least partially explain the resistance of some EBV-associated tumors to IFN therapy. Our work suggests that similar pan-viral-miRNA functional-based screening strategies are warranted for determining relevant activities of other viral miRNAs.
Collapse
|
10
|
Moens U, Van Ghelue M, Ehlers B. Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 2014; 24:343-60. [PMID: 24888895 DOI: 10.1002/rmv.1798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, Molecular Inflammation Research Group, Tromsø, Norway
| | | | | |
Collapse
|
11
|
Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D'Souza BN, Tierney RJ, Bell AI, Cahill PA, Walls D. Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor β1-induced B-cell apoptosis. J Virol 2014; 88:5001-13. [PMID: 24554662 PMCID: PMC3993823 DOI: 10.1128/jvi.03642-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic "sensitizer" protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor β1 (TGF-β1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-β1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some B-cell-derived tumors in which viral genes play a key role in tumor cell emergence and progression. Here, we report for the first time that EBV can shut off a B-cell gene called BIK. When activated by a molecular signal called transforming growth factor β1 (TGF-β1), BIK plays an important role in killing unwanted B cells, including those infected by viruses. We describe the key EBV-B-cell molecular interactions that lead to BIK shutoff. These findings further our knowledge of how EBV prevents the death of its host cell during infection. They are also relevant to certain posttransplant lymphomas where unregulated cell growth is caused by EBV genes.
Collapse
Affiliation(s)
- Eva M. Campion
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad T. Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Susan Phelan
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad M. Smith
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Brendan N. D'Souza
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Rosemary J. Tierney
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul A. Cahill
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- Vascular Biology Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
12
|
Murata T, Sato Y, Kimura H. Modes of infection and oncogenesis by the Epstein-Barr virus. Rev Med Virol 2014; 24:242-53. [PMID: 24578255 DOI: 10.1002/rmv.1786] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/19/2014] [Accepted: 01/23/2014] [Indexed: 12/15/2022]
Abstract
The EBV is a human γ-herpesvirus associated with various neoplasms. It is responsible for causing cancers of B, T, and NK cells as well as cells of epithelial origin. Such diversity in target cells and the complicated steps of oncogenesis are perplexing when we speculate about the mechanisms of action of EBV-positive cancers. Here, we first note three common features that contribute to the development and maintenance of EBV-positive cancers: effects of EBV oncogenes, immunosuppression and evasion/exploitation of the immune system, and genetic and epigenetic predisposition/alteration of the host genome. Then, we demonstrate the mechanisms of oncogenesis and the means by which each EBV-positive cancer develops, with particular focus on the mode of EBV infection. The EBV has two alternative life cycles: lytic and latent. The latter is categorized into four programs (latency types 0-III) in which latent viral genes are expressed differentially depending on the tissue of origin and state of cells. The production of viral latent genes tends to decrease with an increase in time, and, in an approximate manner, the expression levels of viral genes are inversely correlated with the degree of abnormalities in the host genome. Occasional execution of the viral lytic cycle also contributes to oncogenesis. Understanding this life cycle of the EBV and its relevance in oncogenesis may provide valuable clues to the development of effective therapies for the associated cancers.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | |
Collapse
|
13
|
Cesarman E. Gammaherpesviruses and Lymphoproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 9:349-72. [DOI: 10.1146/annurev-pathol-012513-104656] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|