1
|
Liu H, Zhao H, Sun Y. Tumor microenvironment and cellular senescence: Understanding therapeutic resistance and harnessing strategies. Semin Cancer Biol 2022; 86:769-781. [PMID: 34799201 DOI: 10.1016/j.semcancer.2021.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is a major contributor to cancer malignancy including development of therapeutic resistance, a process mediated in part through intercellular crosstalk. Besides diverse soluble factors responsible for pro-survival pathway activation, immune evasion and extracellular matrix (ECM) remodeling further promote cancer resistance. Importantly, therapy-induced senescence (TIS) of cells in the TME is frequently observed in anticancer regimens, an off-target effect that can generate profound impacts on disease progression. By conferring the resistance and fueling the repopulation of remaining cancerous cells, TIS is responsible for tumor relapse and distant metastasis in posttreatment stage. This pathological trajectory can be substantially driven by the pro-inflammatory feature of senescent cells, termed as the senescence-associated secretory phenotype (SASP). Targeting strategies to selectively and efficiently remove senescent cells before they exert non-autonomous but largely deleterious effects, are emerging as an effective solution to prevent drug resistance acquired from a treatment-remodeled TME. In this review, we summarize the TME composition and key activities that affect tissue homeostasis and support treatment resistance. Promising opportunities that allow TME-manipulation and senescent cell-targeting (senotherapy) are discussed, with translational pipelines to overcome therapeutic barriers in clinical oncology projected.
Collapse
Affiliation(s)
- Hanxin Liu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Huifang Zhao
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Yu Sun
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Qian M, Ling W, Ruan Z. Long non-coding RNA SNHG12 promotes immune escape of ovarian cancer cells through their crosstalk with M2 macrophages. Aging (Albany NY) 2020; 12:17122-17136. [PMID: 32927431 PMCID: PMC7521506 DOI: 10.18632/aging.103653] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
Accumulating evidence shows that the tumor microenvironment contributes to this phenomenon and that long non-coding RNAs (lncRNAs) are also involved in this process. In this study, we identified a new lncRNA small nucleolar RNA host gene 12 (SNHG12) and investigated its role in tumor immune escape. We analyzed the expression levels of interlukin (IL)-6R and programmed death-ligand 1 (PD-L1) in 51 ovarian cancer and 20 normal specimens by immunohistochemistry. The correlation between SNHG12 and IL-6R in clinical ovarian cancer samples was identified by RT-qPCR. We then performed SNHG12 gain- and loss-function experiments in order to investigate its role in the regulation of immune escape and the crosstalk between miR-21 and IL-6. T cell proliferation was assessed by flow cytometry. In vivo pro-immune escape activity of SNHG12 was assessed by tumor-xenograft mouse model. IL-6R and PD-L1 were found to be overexpressed in clinical ovarian cancer specimens. Meanwhile, SNHG12 and IL-6R expressions were positively correlated in clinical ovarian cancer samples. SNHG12 facilitated ovarian immune escape by promoting IL-6/miR-21 crosstalk between ovarian cancer cells and M2 macrophages. Notably, SNHG12 promoted IL-6R transcription by recruiting NF-κB1 to the IL-6R promoter. Our study reveals that SNHG12 facilitates ovarian cancer immune escape by upregulating IL-6R.
Collapse
Affiliation(s)
- Min Qian
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P. R. China,Equal contribution
| | - Wanwen Ling
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P. R. China,Equal contribution
| | - Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, P. R. China
| |
Collapse
|
3
|
Nakamura M, Bax HJ, Scotto D, Souri EA, Sollie S, Harris RJ, Hammar N, Walldius G, Winship A, Ghosh S, Montes A, Spicer JF, Van Hemelrijck M, Josephs DH, Lacy KE, Tsoka S, Karagiannis SN. Immune mediator expression signatures are associated with improved outcome in ovarian carcinoma. Oncoimmunology 2019; 8:e1593811. [PMID: 31069161 PMCID: PMC6492968 DOI: 10.1080/2162402x.2019.1593811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/17/2019] [Accepted: 03/02/2019] [Indexed: 01/04/2023] Open
Abstract
Immune and inflammatory cascades may play multiple roles in ovarian cancer. We aimed to identify relationships between expression of immune and inflammatory mediators and patient outcomes. We interrogated differential gene expression of 44 markers and marker combinations (n = 1,978) in 1,656 ovarian carcinoma patient tumors, alongside matched 5-year overall survival (OS) data in silico. Using machine learning methods, we investigated whether genomic expression of these 44 mediators can discriminate between malignant and non-malignant tissues in 839 ovarian cancer and 115 non-malignant ovary samples. We furthermore assessed inflammation markers in 289 ovarian cancer patients’ sera in the Swedish Apolipoprotein MOrtality-related RISk (AMORIS) cohort. Expression of the 44 mediators could discriminate between malignant and non-malignant tissues with at least 96% accuracy. Higher expression of classical Th1, Th2, Th17, anti-parasitic/infection and M1 macrophage mediator signatures were associated with better OS. Contrastingly, inflammatory and angiogenic mediators, CXCL-12, C-reactive protein (CRP) and platelet-derived growth factor subunit A (PDGFA) were negatively associated with OS. Of the serum inflammatory markers in the AMORIS cohort, women with ovarian cancer who had elevated levels of haptoglobin (≥1.4 g/L) had a higher risk of dying from ovarian cancer compared to those with haptoglobin levels <1.4 g/L (HR = 2.09, 95% CI:1.38–3.16). Our findings indicate that elevated “classical” immune mediators, associated with response to pathogen antigen challenge, may confer immunological advantage in ovarian cancer, while inflammatory markers appear to have negative prognostic value. These highlight associations between immune protection, inflammation and clinical outcomes, and offer opportunities for patient stratification based on secretome markers.
Collapse
Affiliation(s)
- Mano Nakamura
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK.,School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Daniele Scotto
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Elmira Amiri Souri
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, UK
| | - Sam Sollie
- King's College London, School of Cancer and Pharmaceutical Sciences, Translational Oncology & Urology Research (TOUR), London, UK
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Niklas Hammar
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Goran Walldius
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Winship
- Departments of Medical Oncology and Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sharmistha Ghosh
- Departments of Medical Oncology and Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ana Montes
- Departments of Medical Oncology and Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - James F Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Mieke Van Hemelrijck
- King's College London, School of Cancer and Pharmaceutical Sciences, Translational Oncology & Urology Research (TOUR), London, UK.,Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK.,School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
4
|
La-Beck NM, Liu X, Wood LM. Harnessing Liposome Interactions With the Immune System for the Next Breakthrough in Cancer Drug Delivery. Front Pharmacol 2019; 10:220. [PMID: 30914953 PMCID: PMC6422978 DOI: 10.3389/fphar.2019.00220] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 01/03/2023] Open
Abstract
Liposomal nanoparticles are a heterogeneous group of engineered drug carriers that have tremendous therapeutic potential in the treatment of cancer. They increase tumor drug delivery, significantly attenuate drug toxicity, and protect the drug from degradation. However, two decades after approval of the first nanoparticle-mediated anticancer drug, pegylated liposomal doxorubicin (Doxil), there has yet to be a major shift in cancer treatment paradigms. Only two anticancer nanoparticles are used in the first-line treatment of cancer patients, with all others relegated to the refractory or salvage setting. Herein, we discuss new insights into the mechanisms underlying in vivo interactions between liposomes and the tumor immunologic milieu, and the knowledge gaps that need to be addressed in order to realize the full clinical potential of cancer nanomedicines. We also discuss immunopharmacology insights from a parallel field, Cancer Immunotherapy, which have the potential to generate breakthroughs in Cancer Nanomedicine.
Collapse
Affiliation(s)
- Ninh M. La-Beck
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United States
| | - Laurence M. Wood
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
5
|
Liu Z, Zhang S, Hou F, Zhang C, Gao J, Wang K. Inhibition of Ca 2+ -activated chloride channel ANO1 suppresses ovarian cancer through inactivating PI3K/Akt signaling. Int J Cancer 2019; 144:2215-2226. [PMID: 30243029 DOI: 10.1002/ijc.31887] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/27/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022]
Abstract
Most common ovarian cancers are epithelial carcinoma in which the etiology for carcinogenesis remains elusive. ANO1/TMEM16A, a member of Ca2+ -activated Cl- channels (CaCCs), has been demonstrated to promote epithelium-originated cancers and whether it plays a role in the pathogenesis of ovarian cancer is unknown. In our study we found that ANO1 proteins were overexpressed in human epithelial ovarian cancer cells and tissue samples. ANO1 protein upregulation was correlated with the clinical FIGO (International Federation of Gynecology and Obstetrics) staging and poor grade in ovarian cancer tissues. Interestingly, the upregulation of ANO1 gene expression was also detected in the peripheral blood mononuclear cells (PBMCs) from preoperative patients with ovarian tumors, and the down-regulation of ANO1 in the PBMCs from postoperative patients. Silencing of ANO1 inhibited proliferation and invasion of ovarian cancer cells. Mechanistically, ANO1 knockdown attenuated phosphorylation of PI3K/Akt, and inhibition of PI3K/Akt signaling by specific inhibitor LY294002 resulted in suppression of ovarian cancer cells growth promoted by ANO1 expression. Furthermore, intratumoral injection of ANO1 siRNA suppressed subcutaneous xenograft tumor growth in nude mice implanted with ovarian cancer SKOV3 cells. Taken together, our findings demonstrate that ANO1 overexpression is involved in the pathogenesis of human epithelial ovarian cancer. Inhibition of ANO1 upregulation or inactivating PI3K/Akt signaling may have therapeutic potential for epithelial ovarian cancer, and the detection of ANO1 expression level in PBMCs from patients may also serve as a biomarker for diagnosis and prognosis of epithelial ovarian cancers.
Collapse
Affiliation(s)
- Zongtao Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Sushan Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Feng Hou
- Department of Clinicopathology, Qingdao University Affiliated Hospital, Qingdao, China
| | - Congxiao Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Jianjun Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
6
|
Gulla S, Lomada D, Srikanth VV, Shankar MV, Reddy KR, Soni S, Reddy MC. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Nair D, Rådestad E, Khalkar P, Diaz-Argelich N, Schröder A, Klynning C, Ungerstedt J, Uhlin M, Fernandes AP. Methylseleninic Acid Sensitizes Ovarian Cancer Cells to T-Cell Mediated Killing by Decreasing PDL1 and VEGF Levels. Front Oncol 2018; 8:407. [PMID: 30324091 PMCID: PMC6172341 DOI: 10.3389/fonc.2018.00407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Redox active selenium (Se) compounds at sub toxic doses act as pro-oxidants with cytotoxic effects on tumor cells and are promising future chemotherapeutic agents. However, little is known about how Se compounds affect immune cells in the tumor microenvironment. We demonstrate that the inorganic Se compound selenite and the organic methylseleninic acid (MSA) do not, despite their pro-oxidant function, influence the viability of immune cells, at doses that gives cytotoxic effects in ovarian cancer cell lines. Treatment of the ovarian cancer cell line A2780 with selenite and MSA increases NK cell mediated lysis, and enhances the cytolytic activity of T cells. Increased T cell function was observed after incubation of T cells in preconditioned media from tumor cells treated with MSA, an effect that was coupled to decreased levels of PDL1, HIF-1α, and VEGF. In conclusion, redox active selenium compounds do not kill or inactivate immune cells at doses required for anti-cancer treatment, and we demonstrate that MSA enhances T cell-mediated tumor cell killing via PDL1 and VEGF inhibition.
Collapse
Affiliation(s)
- Deepika Nair
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emelie Rådestad
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nuria Diaz-Argelich
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Organic and Pharmaceutical Chemistry, University of Navarra, Pamplona, Spain
| | - Axel Schröder
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Klynning
- Department of Gynecological Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Ungerstedt
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Sree Latha T, Reddy MC, Muthukonda SV, Srikanth VV, Lomada D. In vitro and in vivo evaluation of anti-cancer activity: Shape-dependent properties of TiO 2 nanostructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:969-977. [DOI: 10.1016/j.msec.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 11/26/2022]
|
9
|
Knapp P, Bodnar L, Błachnio-Zabielska A, Świderska M, Chabowski A. Plasma and ovarian tissue sphingolipids profiling in patients with advanced ovarian cancer. Gynecol Oncol 2017; 147:139-144. [PMID: 28800942 DOI: 10.1016/j.ygyno.2017.07.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE The role of lipids in carcinogenesis through induction of abnormal cell lines in the human body is currently undisputable. Based on the literature, bioactive sphingolipids play an essential role in the development and progression of cancer and are involved in the metastatic process. The aim of this study was to determine the concentration of selected sphingolipids in patients with advanced ovarian cancer (AOC, FIGO III/IV, high grade ovarian cancer). METHODS Seventy-four patients with ovarian cancer were enrolled. Plasma concentrations of C16-Cer, C18:1-Cer and C18-Cer were assessed by LC/MS/MS. The content of tissue sphingolipids was measured using a UHPLC/MS/MS. RESULTS Plasma concentration of 3 ceramides: C16-Cer, C18:1-Cer and C18-Cer was significantly elevated in women with advanced ovarian cancer compared to control group (P=0.031; 0.022; 0.020; respectively). There were increases in concentration of 5 ceramides: C16-Cer, C18:1-Cer, C18-Cer, C24:1-Cer, C24-Cer (P=0.025; 0.049; 0.032; 0.005; 0.013, respectively) and S1P (P=0.004) in ovarian tissue of women with advanced ovarian cancer compared to healthy individuals. Importantly, significantly higher risk of ovarian cancer when the plasma concentration of C16-Cer>311.88ng/100μl (AUC: 0.76, P=0.0261); C18:1-Cer>4.75ng/100μl (AUC: 0.77, P=0.0160) and C18-Cer>100.76ng/100μl (AUC:0.77, P=0.0136) was noticed. CONCLUSIONS Bioactive sphingolipids play an essential role in the development and progression of cancer and they also take part in the process of metastasizing. This study suggests that some sphingolipids can be used as potential biomarkers of advanced ovarian cancer and that they can play an important role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, 24a Sklodowskiej-Curie Str., 15-276 Bialystok, Poland.
| | - Lubomir Bodnar
- Department of Clinical Oncology, Military Institute of Medicine in Warsaw, 128 Szaserow Str., 04-141 Warsaw, Poland.
| | - Agnieszka Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2c Mickiewicza Str., 15-222 Bialystok, Poland; Department of Physiology, Medical University of Bialystok, 2c Mickiewicza Str., 15-222 Bialystok, Poland.
| | - Magdalena Świderska
- Department of Physiology, Medical University of Bialystok, 2c Mickiewicza Str., 15-222 Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 2c Mickiewicza Str., 15-222 Bialystok, Poland.
| |
Collapse
|
10
|
Surówka J, Wertel I, Okła K, Bednarek W, Tarkowski R, Kotarski J. Influence of ovarian cancer type I and type II microenvironment on the phenotype and function of monocyte-derived dendritic cells. Clin Transl Oncol 2017; 19:1489-1497. [PMID: 28589429 PMCID: PMC5700226 DOI: 10.1007/s12094-017-1686-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this study was to evaluate the influence of ovarian cancer cell lysates isolated from type I or type II ovarian cancer (OC) on the phenotype of monocyte-derived dendritic cells (Mo-DCs) and the cytokine profile. We also determined whether the Mo-DCs and tumor microenvironment, reflected by peritoneal fluid (PF) from type I or II ovarian cancer, could promote regulatory T cell (Tregs) differentiation from naive CD4+ lymphocytes in vitro. RESULTS Our results show a significant role of the ovarian cancer microenvironment reflected by PF from type I or II OC in the inhibition of the DC differentiation process. Interestingly, the percentage of cells co-expressing CD45 and CD14 antigens in the cultures stimulated with PF from both type I and type II OC was higher than in the control. Furthermore, the percentage of cells expressing CD1a, i.e., a marker of immature DCs, was significantly reduced in the cultures stimulated with PF from type I and type II OC. The results obtained show that ovarian cancer type II lysates induce differentiation of monocytes into macrophage-like cells with a CD1a+/HLA-DR+/CD83− phenotype and significantly higher CD86/HLA-DR expression. We show that ovarian cancer type II Mo-DCs are able to prevent an immune response by release of IL-10, whereas OC type I Mo-DCs can promote the generation of Tregs. CONCLUSIONS We demonstrate that each type of ovarian cancer can induce a unique phenotype of DCs and differentiation of Tregs, both associated with immune-suppressive function, which may be an obstacle while developing effective anticancer dendritic cell vaccination.
Collapse
Affiliation(s)
- J Surówka
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland.
| | - I Wertel
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - K Okła
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - W Bednarek
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - R Tarkowski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - J Kotarski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| |
Collapse
|
11
|
Hou R, Yang Z, Wang S, Chu D, Liu Q, Liu J, Jiang L. miR-762 can negatively regulate menin in ovarian cancer. Onco Targets Ther 2017; 10:2127-2137. [PMID: 28442921 PMCID: PMC5396954 DOI: 10.2147/ott.s127872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer accounts for the major part of the mortality attributable to female reproductive system malignant tumors worldwide. Recently, the incidence of ovarian cancer has been increasing annually, and there remains a lack of suitable treatment methods that can significantly improve the 5-year survival rates of patients. Therefore, it is necessary to identify more effective treatments for ovarian cancer. It is established that microRNAs (miRNAs) have important roles in the diagnosis and treatment of ovarian cancer and a specific miRNA, miR-762, can promote the development of a variety of tumors. Menin is encoded by MEN1, a tumor suppressor gene, that is usually downregulated in ovarian cancer. In this study, we evaluated the expression levels of miR-762 and menin in ovarian cancer tissues and demonstrated that they were correlated. In addition, we found that miR-762 can downregulate the expression of menin through a binding site in its 3′-UTR and consequently upregulate the Wnt cell signaling pathway to promote the development of ovarian cancer. These results indicate that miR-762 is a promising potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Rui Hou
- Department of Obstetrics and Gynecology
| | - Zhuo Yang
- Department of Obstetrics and Gynecology
| | | | | | | | - Jia Liu
- Department of Obstetrics and Gynecology
| | - Luo Jiang
- Department of Ultrasound, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
12
|
Bhargava A, Mishra DK, Jain SK, Srivastava RK, Lohiya NK, Mishra PK. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers. Mol Immunol 2016; 79:98-112. [PMID: 27764711 DOI: 10.1016/j.molimm.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.
Collapse
Affiliation(s)
- Arpit Bhargava
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | | - Subodh K Jain
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Rupesh K Srivastava
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Nirmal K Lohiya
- Centre for Advanced Studies in Zoology, University of Rajasthan, Jaipur, India
| | - Pradyumna K Mishra
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India; Department of Molecular Biology, National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
13
|
Wu M, Lou J, Zhang S, Chen X, Huang L, Sun R, Huang P, Pan S, Wang F. Gene expression profiling of CD8 + T cells induced by ovarian cancer cells suggests a possible mechanism for CD8 + Treg cell production. Cell Prolif 2016; 49:669-677. [PMID: 27641758 DOI: 10.1111/cpr.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/30/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate a possible mechanism of CD8+ regulatory T-cell (Treg) production in an ovarian cancer (OC) microenvironment. MATERIALS AND METHODS Agilent microarray was used to detect changes in gene expression between CD8+ T cells cultured with and without the SKOV3 ovarian adenocarcinoma cell line. QRT-PCR was performed to determine glycolysis gene expression in CD8+ T cells from a transwell culturing system and OC patients. We also detected protein levels of glycolysis-related genes using Western blot analysis. RESULTS Comparing gene expression profiles revealed significant differences in expression levels of 1420 genes, of which 246 were up-regulated and 1174 were down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that biological processes altered in CD8+ Treg are particularly associated with energy metabolism. CD8+ Treg cells induced by co-culture with SKOV3 had lower glycolysis gene expression compared to CD8+ T cells cultured alone. Glycolysis gene expression was also decreased in the CD8+ T cells of OC patients. CONCLUSIONS These findings provide a comprehensive bioinformatics analysis of DEGs in CD8+ T cells cultured with and without SKOV3 and suggests that metabolic processes may be a possible mechanism for CD8+ Treg induction.
Collapse
Affiliation(s)
- Meng Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Jianfang Lou
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shuping Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Xian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Ruihong Sun
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Peijun Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China. .,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China.
| |
Collapse
|
14
|
Liu H, Zhang G, Huang J, Ma S, Mi K, Cheng J, Zhu Y, Zha X, Huang W. Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-κB signaling in vitro. J Transl Med 2016; 14:104. [PMID: 27118139 PMCID: PMC4847224 DOI: 10.1186/s12967-016-0845-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/30/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND TLR4/MD-2 complex-mediated MyD88-dependent activation of NF-κB and Akt promotes tumor-associated immunosuppression in epithelial ovarian cancer (EOC) via induction of immunesuppressive cytokines and indoleamine 2,3-dioxygenase (IDO). Atractylenolide I (AO-1) is a naturally occurring sesquiterpene lactone known to change the conformational ensemble of human MD-2 on EOC cells. This study examined the modulation by AO-1 of TLR4/MD-2 complex-mediated MyD88/NF-κB signaling. METHODS The expression and activation of NF-κB, Akt and IDO1 by MyD88(+) EOC SKOV3 cells was determined using western blot; the TLR4/MD-2 complex on SKOV3 cells and the phenotype of T lymphocytes were determined using flow cytometry; IDO activity was evaluated by measuring L-kynurenine; Immunesuppressive cytokines were detected using ELISA; T-cell proliferation to mitogen stimulation was assessed by MTT assay; the cytotoxicity of lymphocytes and NK cells was measured using LDH-cytotoxicity assay. RESULTS AO-1 could down-regulate expression of TLR4/MD-2 complex, resulting in downregulation of MyD88/NF-κB signaling and activation of NF-κB, Akt and IDO1 and secretion of IL-6, TGF-β1, VEGF and IL-17A by EOC SKOV3 cells, and further reduce increased levels of regulatory T cells (Treg cells) and improve decreased proliferative response and antitumor cytotoxicity of T lymphocytes exposed to EOC SKOV3 cell supernatant. CONCLUSION AO-1 may reverse EOC cell-mediated immunosuppression through blocking TLR4/MD-2 complex-mediated MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- Hong Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3 of South People's Road, Chengdu, 610041, China.,Department of Gynecologic Oncology, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Jianming Huang
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Shiqi Ma
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Kun Mi
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Jia Cheng
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Yi Zhu
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China.,Department of Ultrasound, Sichuan Cancer Hospital, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Xiao Zha
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Institute, No.55, Section 4 of South People's Road, Chengdu, 610041, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20, Section 3 of South People's Road, Chengdu, 610041, China.
| |
Collapse
|
15
|
Petrillo M, Nero C, Amadio G, Gallo D, Fagotti A, Scambia G. Targeting the hallmarks of ovarian cancer: The big picture. Gynecol Oncol 2016; 142:176-183. [PMID: 27058837 DOI: 10.1016/j.ygyno.2016.03.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE As a result of relevant achievements in the field of translational research, several active drugs and multiple biological targets are available in ovarian cancer (OC). In this complex scenario, there is an urgent need to effectively summarize the available data in order to update conclusions, and outline perspectives. METHODS The results in terms of target identification and drug development have been summarized using the well-known hallmarks of cancer firstly described, and recently modified by Hanahan and Weinberg [1-2]. Published data from clinical trials have been retrieved from PubMed, Embase, CINAHL and Cochrane database. Ongoing clinical trials were searched using clinicaltrials.gov web platform, and identified using NCT number. RESULTS Genomic instability and angiogenesis are the most actively investigated hallmarks in high-grade serous OC, and the inhibition of tumor immune evasion appears as the emerging strategy for molecularly-driven therapy. Targeting sustained proliferative signaling through MEK and mTOR inhibitors seems the most promising approach in clear cell, and low-grade serous OC. CONCLUSIONS This substantial amount of data suggests that targeted therapies are already part of the clinical and therapeutic management of OC patients. The expectations of getting from translational research a better knowledge of tumor biology and therefore personalized drugs are high and worthy of maximum effort from referral centers.
Collapse
Affiliation(s)
- M Petrillo
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy.
| | - C Nero
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - G Amadio
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - D Gallo
- Department of Obstetrics and Gynecology, Centre for Translational Medicine for Women and Children Health, Catholic University of the Sacred Heart, Rome, Italy
| | - A Fagotti
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy; University of Perugia, Italy
| | - G Scambia
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
16
|
Chen YL, Chou CY, Chang MC, Lin HW, Huang CT, Hsieh SF, Chen CA, Cheng WF. IL17a and IL21 combined with surgical status predict the outcome of ovarian cancer patients. Endocr Relat Cancer 2015; 22:703-11. [PMID: 26150382 DOI: 10.1530/erc-15-0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 12/19/2022]
Abstract
Aside from tumor cells, ovarian cancer-related ascites contains the immune components. The aim of this study was to evaluate whether a combination of clinical and immunological parameters can predict survival in patients with ovarian cancer. Ascites specimens and medical records from 144 ovarian cancer patients at our hospital were used as the derivation group to select target clinical and immunological factors to generate a risk-scoring system to predict patient survival. Eighty-two cases from another hospital were used as the validation group to evaluate this system. The surgical status and expression levels of interleukin 17a (IL17a) and IL21 in ascites were selected for the risk-scoring system in the derivation group. The areas under the receiver operating characteristic (AUROC) curves of the overall score for disease-free survival (DFS) of the ovarian cancer patients were 0.84 in the derivation group, 0.85 in the validation group, and 0.84 for all the patients. The AUROC curves of the overall score for overall survival (OS) of cases were 0.78 in the derivation group, 0.76 in the validation group, and 0.76 for all the studied patients. Good correlations between overall risk score and survival of the ovarian cancer patients were demonstrated by sub-grouping all participants into four groups (P for trend <0.001 for DFS and OS). Therefore, acombination of clinical and immunological parameters can provide a practical scoring system to predict the survival of patients with ovarian carcinoma. IL17a and IL21 can potentially be used as prognostic and therapeutic biomarkers.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/surgery
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/mortality
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Mucinous/surgery
- Biomarkers, Tumor/metabolism
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/surgery
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/mortality
- Endometrial Neoplasms/pathology
- Endometrial Neoplasms/surgery
- Enzyme-Linked Immunosorbent Assay
- Female
- Follow-Up Studies
- Humans
- Interleukin-17/metabolism
- Interleukins/metabolism
- Middle Aged
- Neoplasm Grading
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Neoplasm Staging
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/surgery
- Prognosis
- Prospective Studies
- ROC Curve
- Survival Rate
Collapse
Affiliation(s)
- Yu-Li Chen
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan Univer
| | - Cheng-Yang Chou
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Ming-Cheng Chang
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Han-Wei Lin
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Ching-Ting Huang
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Shu-Feng Hsieh
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Chi-An Chen
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Wen-Fang Cheng
- College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, Taiwan College of MedicineGraduate Institute of Anatomy and Cell Biology, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyGynecologic Cancer Center, Cathay General Hospital, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, TaiwanDepartment of Obstetrics and GynecologyCollege of Medicine and the Hospital, National Cheng Kung University, Tainan, TaiwanCollege of MedicineGraduate Institute of OncologyCollege of MedicineGraduate Institute of Clinical Medicine, National Taiwan Univer
| |
Collapse
|
17
|
Latha TS, Reddy MC, Durbaka PVR, Rachamallu A, Pallu R, Lomada D. γδ T Cell-Mediated Immune Responses in Disease and Therapy. Front Immunol 2014; 5:571. [PMID: 25426120 PMCID: PMC4225745 DOI: 10.3389/fimmu.2014.00571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/24/2014] [Indexed: 12/18/2022] Open
Abstract
The role of γδ T cells in immunotherapy has gained specific importance in the recent years because of their prominent function involving directly or indirectly in the rehabilitation of the diseases. γδ T cells represent a minor population of T cells that express a distinct T cell receptor (TCR) composed of γδ chains instead of αβ chains. Unlike αβ T cells, γδ T cells display a restricted TCR repertoire and recognize mostly unknown non-peptide antigens. γδ T cells act as a link between innate and adaptive immunity, because they lack precise major histocompatibility complex (MHC) restriction and seize the ability to recognize ligands that are generated during affliction. Skin epidermal γδ T cells recognize antigen expressed by damaged or stressed keratinocytes and play an indispensable role in tissue homeostasis and repair through secretion of distinct growth factors. γδ T cell based immunotherapy strategies possess great prominence in the treatment because of the property of their MHC-independent cytotoxicity, copious amount of cytokine release, and a immediate response in infections. Understanding the role of γδ T cells in pathogenic infections, wound healing, autoimmune diseases, and cancer might provide knowledge for the successful treatment of these diseases using γδ T cell based immunotherapy. Enhancing the human Vγ9Vδ2 T cells functions by administration of aminobisphosphonates like zoledronate, pamidronate, and bromohydrin pyrophosphate along with cytokines and monoclonal antibodies shows a hopeful approach for treatment of tumors and infections. The current review summarizes the role of γδ T cells in various human diseases and immunotherapeutic approaches using γδ T cells.
Collapse
Affiliation(s)
- T Sree Latha
- Department of Genetics and Genomics, Yogi Vemana University , Kadapa , India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University , Kadapa , India
| | | | - Aparna Rachamallu
- Department of Animal Biology, University of Hyderabad , Hyderabad , India ; National Institute of Animal Biotechnology (NIAB) , Hyderabad , India
| | - Reddanna Pallu
- Department of Animal Biology, University of Hyderabad , Hyderabad , India ; National Institute of Animal Biotechnology (NIAB) , Hyderabad , India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University , Kadapa , India
| |
Collapse
|
18
|
Zhang S, Lu Z, Unruh AK, Ivan C, Baggerly KA, Calin GA, Li Z, Bast RC, Le XF. Clinically relevant microRNAs in ovarian cancer. Mol Cancer Res 2014; 13:393-401. [PMID: 25304686 DOI: 10.1158/1541-7786.mcr-14-0424] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
microRNAs (miRNAs/miRs) belong to a class of small noncoding RNAs that can negatively regulate messenger RNA (mRNA) expression of target genes. miRNAs are involved in multiple aspects of ovarian cancer cell dysfunction and the phenotype of ovarian cancer cells can be modified by targeting miRNA expression. miRNA profiling has detected a number of candidate miRNAs with the potential to regulate many important biologic functions in ovarian cancer, but their role still needs to be clarified, given the remarkable heterogeneity among ovarian cancers and the context-dependent role of miRNAs. This review summarizes the data collected from The Cancer Genome Atlas (TCGA) and several other genome-wide projects to identify dysregulated miRNAs in ovarian cancers. Copy number variations (CNVs), epigenetic alterations, and oncogenic mutations are also discussed that affect miRNA levels in ovarian disease. Emphasis is given to the role of particular miRNAs in altering expression of genes in human ovarian cancers with the potential to provide diagnostic, prognostic, and therapeutic targets. Particular attention has been given to TP53, BRCA1/2, CA125 (MUC16), HE4 (WFDC2), and imprinted genes such as ARHI (DIRAS3). A better understanding of the abnormalities in miRNA expression and downstream transcriptional and biologic consequences will provide leads for more effective biomarkers and translational approaches in the management of ovarian cancer.
Collapse
Affiliation(s)
- Shu Zhang
- From the Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China. Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna K Unruh
- Department of Bioinformatics Computer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith A Baggerly
- Department of Bioinformatics Computer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zongfang Li
- From the Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
19
|
Song S, Yuan P, Li P, Wu H, Lu J, Wei W. Dynamic analysis of tumor-associated immune cells in DEN-induced rat hepatocellular carcinoma. Int Immunopharmacol 2014; 22:392-9. [PMID: 25066760 DOI: 10.1016/j.intimp.2014.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis and limited methods to predict patient survival. Immune cells infiltrating tumors are known to impact tumor progression. Here, we analyzed the phenotype and function of dendritic cells (DCs), and the frequency of IL-10-producing regulatory B cells (Breg) and Foxp3(+) regulatory T cells (Treg) in different stages of N-nitrosodiethylamine (DEN)-induced rat HCC in order to understand their roles in this disease. 4weeks following DEN treatment, no significant differences in CD80 and CD86 expression were found on DCs from HCC rats and normal rats but 12 and 16weeks following DEN treatment, the expression of CD80, CD86 and MHCII on DCs of HCC rats was significantly decreased. We also found that the frequency of IL-10-producing Breg and CD4(+)CD25(+)Foxp3(+) Treg in HCC rats was obviously increased during all of these three stages. In addition, the bone-marrow derived DCs (BMDCs) from HCC rats displayed lower ability in activating T cells and an increase in IL-10 secretion. No differences in IL-12 level and endocytosis ability were found on BMDCs from HCC rats and normal rats. Our results suggest that the dysfunction of DCs and the increase of IL-10-producing Breg and Foxp3(+) Treg might play important roles in HCC progression.
Collapse
Affiliation(s)
- Shasha Song
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, PR China
| | - Pingfan Yuan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, PR China
| | - Peipei Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, PR China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, PR China
| | - Jingtao Lu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, PR China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, PR China.
| |
Collapse
|