1
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
2
|
Lu L, Kong WY, Zhang J, Firdaus F, Wells JW, Stephenson RJ, Toth I, Skwarczynski M, Cruz JLG. Utilizing murine dendritic cell line DC2.4 to evaluate the immunogenicity of subunit vaccines in vitro. Front Immunol 2024; 15:1298721. [PMID: 38469294 PMCID: PMC10925716 DOI: 10.3389/fimmu.2024.1298721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Subunit vaccines hold substantial promise in controlling infectious diseases, due to their superior safety profile, specific immunogenicity, simplified manufacturing processes, and well-defined chemical compositions. One of the most important end-targets of vaccines is a subset of lymphocytes originating from the thymus, known as T cells, which possess the ability to mount an antigen-specific immune response. Furthermore, vaccines confer long-term immunity through the generation of memory T cell pools. Dendritic cells are essential for the activation of T cells and the induction of adaptive immunity, making them key for the in vitro evaluation of vaccine efficacy. Upon internalization by dendritic cells, vaccine-bearing antigens are processed, and suitable fragments are presented to T cells by major histocompatibility complex (MHC) molecules. In addition, DCs can secrete various cytokines to crosstalk with T cells to coordinate subsequent immune responses. Here, we generated an in vitro model using the immortalized murine dendritic cell line, DC2.4, to recapitulate the process of antigen uptake and DC maturation, measured as the elevation of CD40, MHC-II, CD80 and CD86 on the cell surface. The levels of key DC cytokines, tumor necrosis alpha (TNF-α) and interleukin-10 (IL-10) were measured to better define DC activation. This information served as a cost-effective and rapid proxy for assessing the antigen presentation efficacy of various vaccine formulations, demonstrating a strong correlation with previously published in vivo study outcomes. Hence, our assay enables the selection of the lead vaccine candidates based on DC activation capacity prior to in vivo animal studies.
Collapse
Affiliation(s)
- Lantian Lu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Wei Yang Kong
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Farrhana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - James W. Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jazmina L. Gonzalez Cruz
- Faculty of Medicine, Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
3
|
Hardonnière K, Szely N, El Ali Z, Pallardy M, Kerdine-Römer S. Models of Dendritic Cells to Assess Skin Sensitization. FRONTIERS IN TOXICOLOGY 2022; 4:851017. [PMID: 35373185 PMCID: PMC8971372 DOI: 10.3389/ftox.2022.851017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a complex skin pathology occurring in reaction against environmental substances found in the workplace (cement, hair dyes, textile dyes), in the private environment (e.g., household products, cosmetic ingredients), or following skin exposure to drugs. Many cells are involved in the initiation of ACD during the sensitization phase. The four key events (KE) of skin sensitization AOP are covalent binding to skin proteins (KE1), keratinocyte activation (KE2), activation of DCs (KE3), and T-cell activation and proliferation (KE4), leading to the adverse outcome of ACD. Dendritic cells (DCs) are thus playing a key role in ACD pathophysiology. Indeed, in the presence of chemical sensitizers, DCs migrate from the skin to the draining lymph nodes and present peptide-chemical conjugates to T cells, leading to their activation and proliferation. In vitro methods have been actively developed to assess the activation of DCs by chemicals to establish a reliable in vitro sensitization test. Therefore, this review will detail the most used methods and protocols to develop DC models in vitro. Three different models of DCs will be addressed: 1) DCs derived from Cord Blood (CD34-DCs), 2) DCs derived from Monocytes (Mo-DCs), and 3) DCs derived from mice Bone-Marrow (BM-DCs). In addition, a model of exposition to contact sensitizers to assess KE3 of skin sensitization will be detailed for each of the models presented.
Collapse
|
4
|
Wu Y, Lin H, Lu Y, Huang Y, Dasanayaka BP, Ahmed I, Chen G, Chen Y, Li Z. Allergenicity determination of Turbot parvalbumin for safety of fish allergy via dendritic cells, RBL‐2H3 cell and mouse model. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03763-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Feray A, Szely N, Guillet E, Hullo M, Legrand FX, Brun E, Pallardy M, Biola-Vidamment A. How to Address the Adjuvant Effects of Nanoparticles on the Immune System. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E425. [PMID: 32121170 PMCID: PMC7152845 DOI: 10.3390/nano10030425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
As the nanotechnology market expands and the prevalence of allergic diseases keeps increasing, the knowledge gap on the capacity of nanomaterials to cause or exacerbate allergic outcomes needs more than ever to be filled. Engineered nanoparticles (NP) could have an adjuvant effect on the immune system as previously demonstrated for particulate air pollution. This effect would be the consequence of the recognition of NP as immune danger signals by dendritic cells (DCs). The aim of this work was to set up an in vitro method to functionally assess this effect using amorphous silica NP as a prototype. Most studies in this field are restricted to the evaluation of DCs maturation, generally of murine origin, through a limited phenotypic analysis. As it is essential to also consider the functional consequences of NP-induced DC altered phenotype on T-cells biology, we developed an allogeneic co-culture model of human monocyte-derived DCs (MoDCs) and CD4+ T-cells. We demonstrated that DC: T-cell ratios were a critical parameter to correctly measure the influence of NP danger signals through allogeneic co-culture. Moreover, to better visualize the effect of NP while minimizing the basal proliferation inherent to the model, we recommend testing three different ratios, preferably after five days of co-culture.
Collapse
Affiliation(s)
- Alexia Feray
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Eléonore Guillet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Marie Hullo
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | | | - Emilie Brun
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France;
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| | - Armelle Biola-Vidamment
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France; (A.F.); (N.S.); (E.G.); (M.H.); (M.P.)
| |
Collapse
|
6
|
Pigni M, Ashok D, Stevanin M, Acha-Orbea H. Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line. Front Immunol 2018; 9:1912. [PMID: 30197645 PMCID: PMC6117413 DOI: 10.3389/fimmu.2018.01912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen presenting cells and possess an incomparable ability to activate and instruct T cells, which makes them one of the cornerstones in the regulation of the cross-talk between innate and adaptive immunity. Therefore, a deep understanding of DC biology lays the foundations to describe and to harness the mechanisms that regulate the development of the adaptive response, with clear implications in a vast array of fields such as the study of autoimmune diseases and the development of new vaccines. However, the great difficulty to obtain large quantities of viable non-activated DCs for experimentation have considerably hindered the progress of DC research. Several strategies have been proposed to overcome these limitations by promoting an increase of DC abundance in vivo, by inducing DC development from DC progenitors in vitro and by generating stable DC lines. In the past years, we have described a method to derive immortalized stable DC lines, named MutuDCs, from the spleens of Mushi1 mice, a transgenic mouse strain that express the simian virus 40 Large T-oncogene in the DCs. The comparison of these DC lines with the vast variety of DC subsets described in vivo has shown that all the MutuDC lines that we have generated so far have phenotypic and functional features of type 1 conventional DCs (cDC1s). With the purpose of deriving DC lines with characteristics of type 2 conventional DCs (cDC2s), we bred a new Batf3-/- Mushi1 murine line in which the development of the cDC1 subset is severely defective. The new MutuDC line that we generated from Batf3-/- Mushi1 mice was phenotypically and functionally characterized in this work. Our results demonstrated that all the tested characteristics of this new cell line, including the expression of subset-determining transcription factors, the profile of cytokine production and the ability to present antigens, are comparable with the features of splenic CD4- cDC2s. Therefore, we concluded that our new cell line, that we named CD4- MutuDC2 line, represents a valuable model for the CD4- cDC2 subset.
Collapse
Affiliation(s)
| | | | | | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
7
|
Sun HH, Zhou DF, Zhou JY. The role of DCs in the immunopathogenesis of chronic HBV infection and the methods of inducing DCs maturation. J Med Virol 2015; 88:13-20. [PMID: 26104380 DOI: 10.1002/jmv.24306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is the result of an inadequate immune response towards the virus. Dendritic cells (DCs), as the most efficient professional antigen-presenting cells (APCs), possess the strongest antigen presenting the effect in the body and can stimulate the initial T cell activation and proliferation. DCs of patients with chronic HBV infection are impaired, resulting in more tolerogenic rather than immunogenic responses, which may contribute to viral persistence. Recently, numerous methods have been developed to induce DCs maturation. To date, recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) combined with interleukin-4 (rhIL-4) has been a classic culture combination to DCs. The recently classified type III interferon group interferon-λ (IFN-λ) displays antiviral, antitumor, and immunoregulatory activity. In our laboratory, we demonstrate that IFN-λ1 combined with rhGM-CSF and rhIL-4 can significantly increase the expression of DC surface molecules and the secretion of interleukin-12 (IL-12) and interferon-γ (IFN-γ) in patients with chronic hepatitis B infection. In this review, we emphasize on the role of DCs in the immunopathogenesis of chronic HBV infection. Importantly, we systematic review that the latest update in the current status of knowledge on the methods of inducing DCs maturation in anti-HBV immunity. What's more, we conclude that IFN-λ1 combined with GM-CSF and IL-4 can induce DCs maturation, which could become a possibility to be applied to the autologus dendritic cell vaccine to treat chronic hepatitis B.
Collapse
Affiliation(s)
- Hai-Hua Sun
- Department of Infectious Disease, Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Dong-Fang Zhou
- Department of Infectious Disease, Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jun-Ying Zhou
- Department of Infectious Disease, Third Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|