1
|
Ni C, Zhou W, Yu M, Li X, Li J, Cui Y, Cui W. Vitamin E Treatment Improves the Antioxidant Capacity of Patients Receiving Dialysis: A Systematic Review and Meta-Analysis. Mol Nutr Food Res 2023; 67:e2300269. [PMID: 37726247 DOI: 10.1002/mnfr.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Indexed: 09/21/2023]
Abstract
SCOPE To summarize the effect of vitamin E-coated dialyzer membranes (VEMs) treatment or oral vitamin E intake on antioxidant molecules, such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), and total antioxidant level in patients receiving dialysis. METHODS AND RESULTS A literature search of PubMed, Embase, CNKI, and the Cochrane Library databases is performed from inception to July 1, 2023, with no language nor country restrictions. Twenty-four experimental studies involving 512 patients undergoing dialysis are selected for meta-analysis. The levels of antioxidant markers in the blood of patients receiving hemodialysis (HD) improve with long-term VEMs treatment (p = 0.016). According to the findings of each antioxidant index, there is a significant increase in the levels of erythrocyte-derived SOD (p = 0.047), CAT (p = 0.029), and plasma-derived total antioxidant level (p < 0.001). The antioxidant marker levels in patients receiving HD are significantly increased by oral vitamin E intake (p < 0.001). Erythrocyte-derived SOD (p = 0.003), GPX (p < 0.001), and CAT (p = 0.001) substantially improves after 2-6 months of intervention with oral vitamin E preparation. The antioxidant index of patients receiving peritoneal dialysis (PD) is unaffected by oral vitamin E treatment (p = 0.945). CONCLUSION Vitamin E therapy has a favorable effect on the retention of antioxidant compounds in patients undergoing dialysis.
Collapse
Affiliation(s)
- Ce Ni
- Department of Nephrology, The Second Hospital of Jilin University, 218 Zi-Qiang Street, Changchun, Jilin, 130000, China
| | - Wenhua Zhou
- Department of Nephrology, The Second Hospital of Jilin University, 218 Zi-Qiang Street, Changchun, Jilin, 130000, China
| | - Mengyuan Yu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Zi-Qiang Street, Changchun, Jilin, 130000, China
| | - Xinyang Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 Zi-Qiang Street, Changchun, Jilin, 130000, China
| | - Jian Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 Zi-Qiang Street, Changchun, Jilin, 130000, China
| | - Yingchun Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Zi-Qiang Street, Changchun, Jilin, 130000, China
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Zi-Qiang Street, Changchun, Jilin, 130000, China
| |
Collapse
|
2
|
Fu X, Lei T, Xiao Y, Tang C. Preparation and blood compatibility of polyethersulfone dialysis membrane modified by apixaban as coagulation factor Xa inhibitor. BIOMATERIALS ADVANCES 2022; 139:213012. [PMID: 35882156 DOI: 10.1016/j.bioadv.2022.213012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Blood purification therapy is widely used in the treatment of critically ill patients. However, most dialysis membranes are prone to thrombosis. Activated coagulation factor X (FXa) functions at the intersection of intrinsic, extrinsic, and common coagulation pathways and plays a central role in thrombogenesis. To date, few dialysis membranes that directly inhibit FXa have been reported. We modified a polyethersulfone(PES) membrane using apixaban as an FXa inhibitor and investigated the performance of this membrane (AMPES). The contact angle of the modified membrane was reduced. PWF and retention rates of BSA were increased, demonstrating good hydrophilicity and dialysis performance. Albumin adsorption was reduced from 141.8 ± 15.5 to 114.1 ± 6.9 μg cm-2. Reduced protein adsorption, especially targeted anti-FXa effect, inhibited the activation of intrinsic, extrinsic, and common coagulation pathways, as evidenced by significant prolongations of activated partial thromboplastin time, prothrombin time, and thrombin time by 145.04, 46.84 and 11.46 s, respectively. Furthermore, we determined the FXa concentration of each group, and found that the modified membrane had better anticoagulant performance through the inhibition of FXa. Favorable antiplatelet activity was also demonstrated. Thromboelastogram was used to comprehensively evaluate the anticoagulant and antithrombotic activities of the modified membrane. The R value was increased by 43.1 min, while the reduction in α angle was 42.5°. The coagulation comprehensive index reduction was 34.3. In addition, C3a and C5a were decreased by 15.3 % and 30.4 %, respectively. Furthermore, in vitro cytotoxicity and erythrocyte stability testing as well as in vivo murine experiments demonstrated the biosafety of the modified membrane. These results indicate that the AMPES dialysis membrane has an excellent potential for clinical applications.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, Xiangya Hemophilia Diagnosis and Treatment Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Ting Lei
- Powder Metallurgy Institute of Central South University, China
| | - Yuan Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Endocrinology, Xiangya Hospital, Central South University, China
| | - Ci Tang
- College of Electrical and Information Engineering, Changsha University of Science and Technology, China
| |
Collapse
|
3
|
Kapoor PM. Nutrition Aggrandizement while on ECMO. JOURNAL OF CARDIAC CRITICAL CARE TSS 2022. [DOI: 10.1055/s-0042-1750425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Poonam Malhotra Kapoor
- Department of Cardiac Anaesthesia and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Abstract
Abstract
The rapid development of nanotechnology paved the way for further expansion of polymer chemistry and the fabrication of advanced polymeric membranes. Such modifications allowed enhancing or adding some unique properties, including mechanical strength, excellent biocompatibility, easily controlled degradability, and biological activity. This chapter discusses various applications of polymeric membranes in three significant areas of biomedicine, including tissue engineering, drug delivery systems, and diagnostics. It is intended to highlight here possible ways of improvement the properties of polymeric membranes, by modifying with other polymers, functional groups, compounds, drugs, bioactive components, and nanomaterials.
Collapse
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical Centre , Adam Mickiewicz University , Wszechnicy Piastowskiej 3 , Poznań 61-614 , Poland
| |
Collapse
|
5
|
Ikizler TA, Burrowes JD, Byham-Gray LD, Campbell KL, Carrero JJ, Chan W, Fouque D, Friedman AN, Ghaddar S, Goldstein-Fuchs DJ, Kaysen GA, Kopple JD, Teta D, Yee-Moon Wang A, Cuppari L. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney Dis 2020; 76:S1-S107. [PMID: 32829751 DOI: 10.1053/j.ajkd.2020.05.006] [Citation(s) in RCA: 922] [Impact Index Per Article: 184.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
The National Kidney Foundation's Kidney Disease Outcomes Quality Initiative (KDOQI) has provided evidence-based guidelines for nutrition in kidney diseases since 1999. Since the publication of the first KDOQI nutrition guideline, there has been a great accumulation of new evidence regarding the management of nutritional aspects of kidney disease and sophistication in the guidelines process. The 2020 update to the KDOQI Clinical Practice Guideline for Nutrition in CKD was developed as a joint effort with the Academy of Nutrition and Dietetics (Academy). It provides comprehensive up-to-date information on the understanding and care of patients with chronic kidney disease (CKD), especially in terms of their metabolic and nutritional milieu for the practicing clinician and allied health care workers. The guideline was expanded to include not only patients with end-stage kidney disease or advanced CKD, but also patients with stages 1-5 CKD who are not receiving dialysis and patients with a functional kidney transplant. The updated guideline statements focus on 6 primary areas: nutritional assessment, medical nutrition therapy (MNT), dietary protein and energy intake, nutritional supplementation, micronutrients, and electrolytes. The guidelines primarily cover dietary management rather than all possible nutritional interventions. The evidence data and guideline statements were evaluated using Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria. As applicable, each guideline statement is accompanied by rationale/background information, a detailed justification, monitoring and evaluation guidance, implementation considerations, special discussions, and recommendations for future research.
Collapse
|
6
|
|
7
|
Raffaeli G, Ghirardello S, Passera S, Mosca F, Cavallaro G. Oxidative Stress and Neonatal Respiratory Extracorporeal Membrane Oxygenation. Front Physiol 2018; 9:1739. [PMID: 30564143 PMCID: PMC6288438 DOI: 10.3389/fphys.2018.01739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a frequent condition in critically ill patients, especially if exposed to extracorporeal circulation, and it is associated with worse outcomes and increased mortality. The inflammation triggered by the contact of blood with a non-endogenous surface, the use of high volumes of packed red blood cells and platelets transfusion, the risk of hyperoxia and the impairment of antioxidation systems contribute to the increase of reactive oxygen species and the imbalance of the redox system. This is responsible for the increased production of superoxide anion, hydrogen peroxide, hydroxyl radicals, and peroxynitrite resulting in increased lipid peroxidation, protein oxidation, and DNA damage. The understanding of the pathophysiologic mechanisms leading to redox imbalance would pave the way for the future development of preventive approaches. This review provides an overview of the clinical impact of the oxidative stress during neonatal extracorporeal support and concludes with a brief perspective on the current antioxidant strategies, with the aim to focus on the potential oxidative stress-mediated cell damage that has been implicated in both short and long-term outcomes.
Collapse
Affiliation(s)
- Genny Raffaeli
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Ghirardello
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sofia Passera
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Fabio Mosca
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Bronze-da-Rocha E, Santos-Silva A. Neutrophil Elastase Inhibitors and Chronic Kidney Disease. Int J Biol Sci 2018; 14:1343-1360. [PMID: 30123081 PMCID: PMC6097478 DOI: 10.7150/ijbs.26111] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
End-stage renal disease (ESRD), the last stage of chronic kidney disease (CKD), is characterized by chronic inflammation and oxidative stress. Neutrophils are the front line cells that mediate an inflammatory response against microorganisms as they can migrate, produce reactive oxygen species (ROS), secrete neutrophil serine proteases (NSPs), and release neutrophil extracellular traps (NETs). Serine proteases inhibitors regulate the activity of serine proteases and reduce neutrophil accumulation at inflammatory sites. This review intends to relate the role of neutrophil elastase in CKD and the effects of neutrophil elastase inhibitors in predicting or preventing inflammation.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
9
|
Kohlová M, Amorim CG, Araújo A, Santos-Silva A, Solich P, Montenegro MCBSM. The biocompatibility and bioactivity of hemodialysis membranes: their impact in end-stage renal disease. J Artif Organs 2018; 22:14-28. [DOI: 10.1007/s10047-018-1059-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/08/2018] [Indexed: 12/15/2022]
|
10
|
Oxidative Stress in Hemodialysis Patients: A Review of the Literature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3081856. [PMID: 29138677 PMCID: PMC5613374 DOI: 10.1155/2017/3081856] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Hemodialysis (HD) patients are at high risk for all-cause mortality and cardiovascular events. In addition to traditional risk factors, excessive oxidative stress (OS) and chronic inflammation emerge as novel and major contributors to accelerated atherosclerosis and elevated mortality. OS is defined as the imbalance between antioxidant defense mechanisms and oxidant products, the latter overwhelming the former. OS appears in early stages of chronic kidney disease (CKD), advances along with worsening of renal failure, and is further exacerbated by the HD process per se. HD patients manifest excessive OS status due to retention of a plethora of toxins, subsidized under uremia, nutrition lacking antioxidants and turn-over of antioxidants, loss of antioxidants during renal replacement therapy, and leukocyte activation that leads to accumulation of oxidative products. Duration of dialysis therapy, iron infusion, anemia, presence of central venous catheter, and bioincompatible dialyzers are several factors triggering the development of OS. Antioxidant supplementation may take an overall protective role, even at early stages of CKD, to halt the deterioration of kidney function and antagonize systemic inflammation. Unfortunately, clinical studies have not yielded unequivocal positive outcomes when antioxidants have been administered to hemodialysis patients, likely due to their heterogeneous clinical conditions and underlying risk profile.
Collapse
|
11
|
Naturally Occurring Compounds: New Potential Weapons against Oxidative Stress in Chronic Kidney Disease. Int J Mol Sci 2017; 18:ijms18071481. [PMID: 28698529 PMCID: PMC5535971 DOI: 10.3390/ijms18071481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/22/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a well-described imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense system of cells and tissues. The overproduction of free radicals damages all components of the cell (proteins, lipids, nucleic acids) and modifies their physiological functions. As widely described, this condition is a biochemical hallmark of chronic kidney disease (CKD) and may dramatically influence the progression of renal impairment and the onset/development of major systemic comorbidities including cardiovascular diseases. This state is exacerbated by exposure of the body to uremic toxins and dialysis, a treatment that, although necessary to ensure patients' survival, exposes cells to non-physiological contact with extracorporeal circuits and membranes with consequent mitochondrial and anti-redox cellular system alterations. Therefore, it is undeniable that counteracting oxidative stress machinery is a major pharmacological target in medicine/nephrology. As a consequence, in recent years several new naturally occurring compounds, administered alone or integrated with classical therapies and an appropriate lifestyle, have been proposed as therapeutic tools for CKD patients. In this paper, we reviewed the recent literature regarding the "pioneering" in vivo testing of these agents and their inclusion in small clinical trials performed in patients affected by CKD.
Collapse
|
12
|
Renal Function Replacement by Hemodialysis: Forty-Year Anniversary and a Glimpse into the Future at Hand. Int J Artif Organs 2017; 40:313-322. [DOI: 10.5301/ijao.5000623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/24/2022]
Abstract
From its introduction in 1943 and until the late 1970s, hemodialysis (HD) has been a lengthy and cumbersome treatment administered by a few skilled physicians and technicians to a very limited number of terminal kidney patients. The technological innovations introduced over the years made HD a treatment administered and supervised by nursing personnel to a very large numbers of kidney patients, hopefully until recovery of kidney functions or kidney transplantation. In 2013, it is estimated that 2.250.00 kidney patients were treated worldwide, and their number is steadily increasing. Shortage of transplant kidneys and quality of current treatments has contributed to increasing the survival of HD patients. Today, it is not unusual to find patients who have been on HD for longer than twenty years. All this generated the feeling that performance of membranes and dialysis technology has reached its limit. Recently, the increasing economic burden of healthcare caused by people ageing and the increasing incidence of degenerative diseases (e.g. diabetes and cardiovascular diseases), and the economic crisis has pushed many governments and health insurances to cut resources for healthcare. The main consequence is that investments in research and development in HD have been significantly reduced. The question is whether there is indeed no need for innovation in HD. In this paper, it is discussed how the paradigm of HD has changed and what possibly are now the drivers for innovation in HD. A few ideas are proposed that could be developed by adapting existing technologies to the future needs of HD.
Collapse
|
13
|
Wu HL, Bremner DH, Li HY, Shi QQ, Wu JZ, Xiao RQ, Zhu LM. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:702-9. [DOI: 10.1016/j.msec.2016.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/08/2016] [Indexed: 01/02/2023]
|
14
|
Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond) 2015; 12:49. [PMID: 26612997 PMCID: PMC4660721 DOI: 10.1186/s12986-015-0044-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolic changes during chronic kidney disease (CKD) may induce higher production of oxygen radicals that play a significant role in the progression of renal damage and in the onset of important comorbidities. This condition seems to be in part related to dysfunctional mitochondria that cause an increased electron "leakage" from the respiratory chain during oxidative phosphorylation with a consequent generation of reactive oxygen species (ROS). ROS are highly active molecules that may oxidize proteins, lipids and nucleic acids with a consequent damage of cells and tissues. To mitigate this mitochondria-related functional impairment, a variety of agents (including endogenous and food derived antioxidants, natural plants extracts, mitochondria-targeted molecules) combined with conventional therapies could be employed. However, although the anti-oxidant properties of these substances are well known, their use in clinical practice has been only partially investigated. Additionally, for their correct utilization is extremely important to understand their effects, to identify the correct target of intervention and to minimize adverse effects. Therefore, in this manuscript, we reviewed the characteristics of the available mitochondria-targeted anti-oxidant compounds that could be employed routinely in our nephrology, internal medicine and renal transplant centers. Nevertheless, large clinical trials are needed to provide more definitive information about their use and to assess their overall efficacy or toxicity.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Alessandra Dalla Gassa
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Paola Tomei
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| |
Collapse
|
15
|
Kirmizis D, Papagianni A, Efstratiadis G, Memmos D. Impact of inflammation on anti-oxidative effects of vitamin E-coated membrane dialyzer in patients on chronic hemodialysis. Hemodial Int 2014; 18:751-7. [PMID: 24641709 DOI: 10.1111/hdi.12154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hemodialysis (HD) with the use of vitamin E-coated membrane (VEM) dialyzers is shown to exert anti-inflammatory and antioxidative effects in patients with end-stage renal disease on HD. However, the association of baseline inflammatory status with the antioxidative effects of VEM has not been investigated thus far. Thirty-five stable end-stage renal disease patients treated with VEM for 6 months were enrolled in the present prospective, observational cohort study. For the previous 3 months minimum, 17 (48%) patients were dialyzed with a cellulose, eight (23%) patients with a hemophane, and 10 (29%) patients with a polysulfone 1.2 to 1.5 m(2) hollow fiber dialyzer. The effects of treatment on oxidized low-density lipoprotein (oxLDL) were stratified according to half percentiles of baseline serum logC-reactive protein and interleukin-6, and the association between treatment goal, arbitrarily defined as a minimum 30% decrease in baseline oxLDL, was assessed with the use of logistic regression analysis. The higher C-reactive protein and interleukin-6 half percentiles were independently and additively associated with a higher odds ratio for achieving treatment goal. Adjustment for baseline oxLDL, age, sex, HD duration, smoking, and body mass index did not attenuate the odds ratios, whereas the history of diabetes, as primary renal disease, significantly decreased the odds ratio for achieving treatment goal. Increased baseline C-reactive protein and interleukin-6 are independent, additive factors associated with the effect of VEM on oxLDL in HD patients.
Collapse
Affiliation(s)
- Dimitrios Kirmizis
- Department of Nephrology, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece
| | | | | | | |
Collapse
|
16
|
Kosmadakis G, Da Costa Correia E, Carceles O, Somda F, Aguilera D. Vitamins in dialysis: who, when and how much? Ren Fail 2014; 36:638-50. [DOI: 10.3109/0886022x.2014.882714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Lines SW, Carter AM, Dunn EJ, Lindley EJ, Tattersall JE, Wright MJ. A randomized controlled trial evaluating the erythropoiesis stimulating agent sparing potential of a vitamin E-bonded polysulfone dialysis membrane. Nephrol Dial Transplant 2013; 29:649-56. [PMID: 24293660 PMCID: PMC3938299 DOI: 10.1093/ndt/gft481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Vitamin E (VE) bonded polysulfone dialysis membranes have putative erythropoiesis stimulating agent (ESA)-sparing and anti-inflammatory properties based on data from a small number of studies. We sought to investigate this in a large, prospective 12-month randomized controlled trial. Methods Two-hundred and sixty prevalent haemodialysis (HD) patients were randomized to dialysis with VE-bonded polysulfone membranes or non-VE-bonded equivalents. All ESA-dosing was performed by means of a computer-based anaemia management decision support system. Monthly data were used to calculate the ESA resistance index (ERI) and blood tests were performed at baseline, 6 and 12 months for measurement of C-reactive protein (CRP) levels. Results Of the 260 patients, 123 were randomized to dialysis with the VE-membrane and 12-month data was available for 220 patients. At the study population level, no beneficial effect of the VE membranes on the ERI or CRP levels was observed. Post hoc analyses indicated that there was a significant fall in ERI for patients with the highest baseline ESA resistance dialysed with the VE (9.28 [7.70–12.5] versus 7.70 [5.34–12.7] IU/week/kg/g/dL Hb, P = 0.01) but not the control membranes (9.45 [7.62–12.3] versus 8.14 [4.44–15.6] IU/week/kg/g/dL Hb, P = 0.41); this was not attributable to changes in CRP levels. Conclusions Wholesale switching of all chronic HD patients to dialysis with VE-bonded polysulfone membranes appears not to be associated with improvements in ESA-responsiveness or CRP. These membranes may have utility in patients with heightened ESA resistance.
Collapse
Affiliation(s)
- Simon W Lines
- Department of Nephrology, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | |
Collapse
|
18
|
Kirmizis D, Papagianni A, Dogrammatzi F, Belechri AM, Alexopoulos E, Efstratiadis G, Memmos D. The effects of vitamin E-coated membrane dialyzer compared to simvastatin in patients on chronic hemodialysis. Ren Fail 2012; 34:1135-9. [PMID: 22950641 DOI: 10.3109/0886022x.2012.717484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We investigated the effects of the use of vitamin E-coated membrane (VEM) dialyzer in comparison to simvastatin on markers of chronic inflammation, oxidative stress, and endothelial cell apoptosis in ten patients on chronic hemodialysis (HD), aiming at distinguishing the different treatment effects and their time sequence on these pathogenetic routes. METHODS Ten HD patients were sequentially submitted to a 6-month treatment with the use of VEM and 10 mg of simvastatin daily, interrupted by a 3-month washout period. At baseline, at 3, and 6 months of each trial, serum C-reactive protein (CRP), apolipoprotein (Apo) A1 and B, lipoprotein-a [Lp(a)], high-sensitivity interleukin-6 (hsIL-6), monocyte chemoattractant protein-1 (MCP-1), soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), soluble Fas (sFas), soluble Fas ligand (sFasL), and plasma oxidized low-density lipoproteins (oxLDL) levels were determined. RESULTS VEM treatment resulted in a significant decrease in CRP, IL-6, sICAM-1 at 3 months, and oxLDL at 6 months, compared to baseline. Simvastatin resulted in a significant decrease in CRP, which correlated with decreases in both total (r = 0.87, p < 0.05) and low-density lipoprotein cholesterol, IL-6, sICAM-1, sVCAM-1, oxLDL, and sFas at 6 months, compared to baseline. Simvastatin effects on sVCAM-1 (mean difference = 652 ng/mL; 95% CI = 294 to 2686; p < 0.05) and sFas (mean difference = 1284 pg/mL; 95% CI = 510 to 1910; p < 0.05) differed significantly from the corresponding VEM effects. CONCLUSIONS The 6-month use of VEM resulted in more direct and immediate anti-inflammatory effects compared with those caused by the 6-month treatment with simvastatin. Simvastatin caused a more intense decrease in the markers of inflammation, which was in part correlated with its lipid-lowering effects.
Collapse
Affiliation(s)
- Dimitrios Kirmizis
- Department of Nephrology, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
19
|
Filiopoulos V, Takouli L, Vlassopoulos D. The effect of vitamin E-coated membrane dialysers on inflammation and oxidative stress in maintenance haemodialysis patients. Nephrol Dial Transplant 2011; 26:3064-5; author reply 3065. [PMID: 21750164 DOI: 10.1093/ndt/gfr329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Kirmizis D, Papagianni A. Reply. Nephrol Dial Transplant 2011. [DOI: 10.1093/ndt/gfr230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Musial K, Zwolinska D. The impact of vitamin E-coated membranes on soluble adhesion molecules. Nephrol Dial Transplant 2011; 26:2416; author reply 2416-7. [DOI: 10.1093/ndt/gfr228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Kirmizis D, Papagianni A, Belechri AM, Memmos D. Effects of vitamin E-coated membrane dialyser on markers of oxidative stress and inflammation in patients on chronic haemodialysis. Nephrol Dial Transplant 2011; 26:2296-2301. [DOI: 10.1093/ndt/gfq715] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
23
|
Del Vecchio L, Locatelli F, Carini M. What We Know About Oxidative Stress in Patients with Chronic Kidney Disease on Dialysis-Clinical Effects, Potential Treatment, and Prevention. Semin Dial 2011; 24:56-64. [PMID: 21299632 DOI: 10.1111/j.1525-139x.2010.00819.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology, Dialysis, and Renal Transplant, A Manzoni Hospital, Lecco, Italy
| | | | | |
Collapse
|
24
|
Schupp N, Heidland A, Stopper H. Genomic damage in endstage renal disease-contribution of uremic toxins. Toxins (Basel) 2010; 2:2340-58. [PMID: 22069557 PMCID: PMC3153169 DOI: 10.3390/toxins2102340] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/23/2010] [Accepted: 09/26/2010] [Indexed: 12/16/2022] Open
Abstract
Patients with end-stage renal disease (ESRD), whether on conservative, peritoneal or hemodialysis therapy, have elevated genomic damage in peripheral blood lymphocytes and an increased cancer incidence, especially of the kidney. The damage is possibly due to accumulation of uremic toxins like advanced glycation endproducts or homocysteine. However, other endogenous substances with genotoxic properties, which are increased in ESRD, could be involved, such as the blood pressure regulating hormones angiotensin II and aldosterone or the inflammatory cytokine TNF-α. This review provides an overview of genomic damage observed in ESRD patients, focuses on possible underlying causes and shows modulations of the damage by modern dialysis strategies and vitamin supplementation.
Collapse
Affiliation(s)
- Nicole Schupp
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany;
- Author to whom correspondence should be addressed; ; Tel.: +49-931-20148722; Fax: +49-931-20148446
| | - August Heidland
- Department of Internal Medicine, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany;
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany;
| |
Collapse
|