1
|
Peier A, Ge L, Boyer N, Frost J, Duggal R, Biswas K, Edmondson S, Hermes JD, Yan L, Zimprich C, Sadruddin A, Kristal Kaan HY, Chandramohan A, Brown CJ, Thean D, Lee XE, Yuen TY, Ferrer-Gago FJ, Johannes CW, Lane DP, Sherborne B, Corona C, Robers MB, Sawyer TK, Partridge AW. NanoClick: A High Throughput, Target-Agnostic Peptide Cell Permeability Assay. ACS Chem Biol 2021; 16:293-309. [PMID: 33539064 DOI: 10.1021/acschembio.0c00804] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrocyclic peptides open new opportunities to target intracellular protein-protein interactions (PPIs) that are often considered nondruggable by traditional small molecules. However, engineering sufficient membrane permeability into these molecules is a central challenge for identifying clinical candidates. Currently, there is a lack of high-throughput assays to assess peptide permeability, which limits our capacity to engineer this property into macrocyclic peptides for advancement through drug discovery pipelines. Accordingly, we developed a high throughput and target-agnostic cell permeability assay that measures the relative cumulative cytosolic exposure of a peptide in a concentration-dependent manner. The assay was named NanoClick as it combines in-cell Click chemistry with an intracellular NanoBRET signal. We validated the approach using known cell penetrating peptides and further demonstrated a correlation to cellular activity using a p53/MDM2 model system. With minimal change to the peptide sequence, NanoClick enables the ability to measure uptake of molecules that enter the cell via different mechanisms such as endocytosis, membrane translocation, or passive permeability. Overall, the NanoClick assay can serve as a screening tool to uncover predictive design rules to guide structure-activity-permeability relationships in the optimization of functionally active molecules.
Collapse
Affiliation(s)
- Andrea Peier
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lan Ge
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Nicolas Boyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - John Frost
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ruchia Duggal
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Kaustav Biswas
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Scott Edmondson
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Lin Yan
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Chad Zimprich
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | | | | | - Christopher J. Brown
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Dawn Thean
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Xue Er Lee
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Tsz Ying Yuen
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | | | - Charles W. Johannes
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - David P. Lane
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Brad Sherborne
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Cesear Corona
- Promega Biosciences Incorporated, San Luis Obispo, California 93401, United States
| | | | - Tomi K. Sawyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|