1
|
Naganuma T, Imasawa T, Nukui I, Wakasugi M, Kitamura H, Yatsuka Y, Kishita Y, Okazaki Y, Murayama K, Jinguji Y. Focal segmental glomerulosclerosis with a mutation in the mitochondrially encoded NADH dehydrogenase 5 gene: A case report. Mol Genet Metab Rep 2023; 35:100963. [PMID: 36941957 PMCID: PMC10024046 DOI: 10.1016/j.ymgmr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
NADH dehydrogenase 5 (ND5) is one of 44 subunits composed of Complex I in mitochondrial respiratory chain. Therefore, a mitochondrially encoded ND5 (MT-ND5) gene mutation causes mitochondrial oxidative phosphorylation (OXPHOS) disorder, resulting in the development of mitochondrial diseases. Focal segmental glomerulosclerosis (FSGS) which had podocytes filled with abnormal mitochondria is induced by mitochondrial diseases. An MT-ND5 mutation also causes FSGS. We herein report a Japanese woman who was found to have proteinuria and renal dysfunction in an annual health check-up at 29 years old. Because her proteinuria and renal dysfunction were persistent, she had a kidney biopsy at 33 years of age. The renal histology showed FSGS with podocytes filled with abnormal mitochondria. The podocytes also had foot process effacement and cytoplasmic vacuolization. In addition, the renal pathological findings showed granular swollen epithelial cells (GSECs) in tubular cells, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells (AiDIVs), and red-coloured podocytes (ReCPos) by acidic dye. A genetic analysis using peripheral mononuclear blood cells and urine sediment cells detected the m.13513 G > A variant in the MT-ND5 gene. Therefore, this patient was diagnosed with FSGS due to an MT-ND5 gene mutation. Although this is not the first case report to show that an MT-ND5 gene mutation causes FSGS, this is the first to demonstrate podocyte injuries accompanied with accumulation of abnormal mitochondria in the cytoplasm.
Collapse
Key Words
- ATP, adenosine triphosphate
- AiDIVs, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells
- COX IV, cytochrome c oxidase subunit 4
- Case report
- Cr, creatinine
- FSGS, focal segmental glomerulosclerosis
- Focal segmental glomerulosclerosis
- GSECs, granular swollen epithelial cells
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MRC, mitochondrial respiratory chain
- MT-ND5, mitochondrially encoded ND5
- Mitochondrial nephropathy
- NADH dehydrogenase 5
- ND5, NADH dehydrogenase 5
- OXPHOS:, oxidative phosphorylation
- Podocyte
- ReCPos, red-coloured podocytes
- eGFR, estimated glomerular filtration rate
- mtDNA, mitochondrial DNA
- nDNA, nuclear DNA
- sCr, serum creatinine
Collapse
Affiliation(s)
- Tsukasa Naganuma
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
- Corresponding author.
| | - Ikuo Nukui
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Masakiyo Wakasugi
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Hiroshi Kitamura
- Department of Clinical Pathology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yoshimi Jinguji
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| |
Collapse
|
2
|
The Mitochondrial tRNA Ser(UCN) Gene: A Novel m.7484A>G Mutation Associated with Mitochondrial Encephalomyopathy and Literature Review. Life (Basel) 2023; 13:life13020554. [PMID: 36836911 PMCID: PMC9963529 DOI: 10.3390/life13020554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Mitochondrial tRNASer(UCN) is considered a hot-spot for non-syndromic and aminoglycoside-induced hearing loss. However, many patients have been described with more extensive neurological diseases, mainly including epilepsy, myoclonus, ataxia, and myopathy. We describe a novel homoplasmic m.7484A>G mutation in the tRNASer(UCN) gene affecting the third base of the anticodon triplet in a girl with profound intellectual disability, spastic tetraplegia, sensorineural hearing loss, a clinical history of epilepsia partialis continua and vomiting, typical of MELAS syndrome, leading to a myoclonic epilepticus status, and myopathy with severe COX deficiency at muscle biopsy. The mutation was also found in the homoplasmic condition in the mother who presented with mild cognitive deficit, cerebellar ataxia, myoclonic epilepsy, sensorineural hearing loss and myopathy with COX deficient ragged-red fibers consistent with MERRF syndrome. This is the first anticodon mutation in the tRNASer(UCN) and the second homoplasmic mutation in the anticodon triplet reported to date.
Collapse
|
3
|
Feng J, Chen Z, Liang W, Wei Z, Ding G. Roles of Mitochondrial DNA Damage in Kidney Diseases: A New Biomarker. Int J Mol Sci 2022; 23:ijms232315166. [PMID: 36499488 PMCID: PMC9735745 DOI: 10.3390/ijms232315166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The kidney is a mitochondria-rich organ, and kidney diseases are recognized as mitochondria-related pathologies. Intact mitochondrial DNA (mtDNA) maintains normal mitochondrial function. Mitochondrial dysfunction caused by mtDNA damage, including impaired mtDNA replication, mtDNA mutation, mtDNA leakage, and mtDNA methylation, is involved in the progression of kidney diseases. Herein, we review the roles of mtDNA damage in different setting of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). In a variety of kidney diseases, mtDNA damage is closely associated with loss of kidney function. The level of mtDNA in peripheral serum and urine also reflects the status of kidney injury. Alleviating mtDNA damage can promote the recovery of mitochondrial function by exogenous drug treatment and thus reduce kidney injury. In short, we conclude that mtDNA damage may serve as a novel biomarker for assessing kidney injury in different causes of renal dysfunction, which provides a new theoretical basis for mtDNA-targeted intervention as a therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhongping Wei
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|
4
|
Finsterer J, Scorza FA. Renal manifestations of primary mitochondrial disorders. Biomed Rep 2017; 6:487-494. [PMID: 28515908 DOI: 10.3892/br.2017.892] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present review was to summarize and discuss previous findings concerning renal manifestations of primary mitochondrial disorders (MIDs). A literature review was performed using frequently used databases. The study identified that primary MIDs frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) at onset or in the later course of the MID. Occasionally, the kidneys are affected in MIDs. Renal manifestations of MIDs include renal insufficiency, nephrolithiasis, nephrotic syndrome, renal cysts, renal tubular acidosis, Bartter-like syndrome, Fanconi syndrome, focal segmental glomerulosclerosis, tubulointerstitial nephritis, nephrocalcinosis, and benign or malign neoplasms. Among the syndromic MIDs, renal involvement has been most frequently reported in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome, Kearns-Sayre syndrome, Leigh syndrome and mitochondrial depletion syndromes. Only in single cases was renal involvement also reported in chronic progressive external ophthalmoplegia, Pearson syndrome, Leber's hereditary optic neuropathy, coenzyme-Q deficiency, X-linked sideroblastic anemia and ataxia, myopathy, lactic acidosis, and sideroblastic anemia, pyruvate dehydrogenase deficiency, growth retardation, aminoaciduria, cholestasis, iron overload, lactacidosis, and early death, and hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis syndrome. The present study proposes that the frequency of renal involvement in MIDs is probably underestimated. Diagnosis of renal involvement follows general guidelines and treatment is symptomatic. Thus, renal manifestations of primary MIDs require recognition and appropriate management, as they determine the outcome of MID patients.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurological Department, Municipal Hospital Rudolfstiftung, A-1030 Vienna, Austria
| | - Fulvio Alexandre Scorza
- Paulista de Medicina School, Federal University of São Paulo, Primeiro Andar CEP, São Paulo 04039-032, SP, Brazil
| |
Collapse
|
5
|
Hara S, Ishimura T, Fujisawa M, Nishi S, Itoh T. Granular swollen epithelial cells in the kidney allograft: A clinicopathological study with special emphasis on possible marker for kidney allograft aging. Nephrology (Carlton) 2016; 21 Suppl 1:14-9. [PMID: 26969019 DOI: 10.1111/nep.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 11/29/2022]
Abstract
AIM To elucidate the clinicopathological significance of granular swollen epithelial cells (GSECs), which provides histological evidence in the diagnosis of mitochondrial nephropathy, but incidentally observed in renal allografts, we evaluated GSECs as a surrogate histological marker for kidney allograft aging, as previously reported for p16, p21, and β-galactosidase. METHODS We retrospectively reviewed 426 kidney allograft biopsy specimens diagnosed at our university from January 2009 to April 2015. The prevalence and density of GSECs were compared with an age-matched control group of 508 native kidney biopsies. GSECs were defined as swollen (>2 times larger than normal renal tubular cells) epithelial cells best observed using Masson trichrome staining. Morphometric analyses were performed using digital microscopy software. RESULTS The prevalence of GSECs was 7.7% in allograft kidneys and 8.1% in native kidneys. GSECs in kidney allografts were predominantly detected in medullary renal tubules, but not in the Bowman's capsular epithelium or podocytes. GSECs were observed in the following cases; no remarkable changes, n = 11; interstitial fibrosis and tubular atrophy, n = 7; chronic calcineurin inhibitor toxicity, n = 5; antibody-mediated rejection, n = 3; T cell-mediated rejection grade IA, n = 1; and others, n = 6. Compared with control specimens, medullary density of GSECs in kidney allografts was significantly increased. The prevalence of GSECs slightly increased with post-transplant duration; however, this trend was not statistically significant. CONCLUSIONS The present study does not provide pathological significance of GSEC in kidney allografts in terms of allograft aging, and warrant the further research with molecular approach.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ishimura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi Nishi
- Department of Nephrology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
Imasawa T, Tanaka M, Maruyama N, Kawaguchi T, Yamaguchi Y, Rossignol R, Kitamura H, Nishimura M. Pathological similarities between low birth weight-related nephropathy and nephropathy associated with mitochondrial cytopathy. Diagn Pathol 2014; 9:181. [PMID: 25350944 PMCID: PMC4189739 DOI: 10.1186/s13000-014-0181-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/07/2014] [Indexed: 12/15/2022] Open
Abstract
Background Individuals born with a low birth weight (LBW) have a higher risk of developing kidney dysfunction during their lifetime and sometimes exhibit focal segmental glomerulosclerosis (FSGS) lesions in their glomeruli. We herein try to obtain other pathological characteristics of LBW-related nephropathy. Methods We retrospectively evaluated the renal pathology of four patients demonstrating FSGS with a history of LBW. Two mitochondrial cytopathy patients were also analyzed. DNA mutations were surveyed using a PCR-Luminex assay. Results In all four FSGS patients with a history of LBW, focal segmental glomerulosclerosis were detected. Interestingly, granular swollen epithelial cells (GSECs), which have previously been reported exclusively in patients with mitochondrial cytopathy, were also observed in the distal tubules and/or collecting ducts of all four patients with a history of low birth weight in this study. Electron microscopy revealed that these granular swollen epithelial cells included an increased number of enlarged mitochondria. Furthermore, cytochrome c oxidase subunit IV staining of patients with a history of low birth weight and patients with mitochondrial DNA mutations showed unbalanced expression patterns in glomeruli and a part of tubular cells. However, no mitochondrial gene mutations were detected in any of our four patients with low birth weight-related nephropathy. Conclusions This is the first report to show the pathological similarities not only in glomeruli but also tubuli between nephropathy with a LBW history and nephropathy with mitochondrial cytopathy. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_181
Collapse
|