1
|
Garban Z, Ilia G. Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals. Molecules 2024; 29:5671. [PMID: 39683830 DOI: 10.3390/molecules29235671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we emphasize structure-activity and the effects on mammals of plant growth bioregulators. plant growth bioregulators can be referred to as "biochemical effectors" since they are substances having biological activity. It is possible to distinguish between "bioregulators" and "regulators" due to the significance of the compounds mentioned above in biochemistry and agrobiology. Thus, "plant growth bioregulators" (PGBRs) are the names given to naturally occurring chemical substances produced by biosynthetic processes. PGBRs affect both plant reign and animal reign. A plethora of plant growth bioregulators were described in the literature, so the structure, activity in plants, and their effects on mammals are presented.
Collapse
Affiliation(s)
- Zeno Garban
- Biochemistry and Molecular Biology, University of Life Sciences "King Michael I", 119 Aradului Ave., 300645 Timisoara, Romania
- Working Group for Xenobiochemistry, Romanian Academy-Timisoara Branch, 24 M. Viteazu Ave., 300223 Timisoara, Romania
| | - Gheorghe Ilia
- Department of Biology-Chemistry, West University Timisoara, 16 Pestalozzi Str., 300223 Timisoara, Romania
| |
Collapse
|
2
|
Cernaro V, Calabrese V, Loddo S, Corsaro R, Macaione V, Ferlazzo VT, Cigala RM, Crea F, De Stefano C, Gembillo G, Romeo A, Longhitano E, Santoro D, Buemi M, Benvenga S. Indole-3-acetic acid correlates with monocyte-to-high-density lipoprotein (HDL) ratio (MHR) in chronic kidney disease patients. Int Urol Nephrol 2022; 54:2355-2364. [PMID: 35147839 DOI: 10.1007/s11255-022-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Indole-3-acetic acid is a protein-bound indolic uremic toxin deriving from tryptophan metabolism. Increased levels are associated with higher thrombotic risk and both cardiovascular and all-cause mortality. An emerging biomarker of cardiovascular disease is the monocyte-to-high-density lipoprotein ratio (MHR). The main purpose of this study was to investigate the association of indole-3-acetic acid with MHR and other markers of cardiovascular risk in patients with chronic kidney disease (CKD). METHODS We enrolled 61 non-dialysis CKD patients and 6 dialysis patients. Indole-3-acetic acid levels were measured with ELISA technique. RESULTS In the whole cohort of 67 patients, indole-3-acetic acid was directly related to Ca × P (ρ = 0.256; P = 0.0365) and MHR (ρ = 0.321; P = 0.0082). In the 40 patients with previous cardiovascular events, indole-3-acetic acid correlated with uric acid (r = 0.3952; P = 0.0116) and MHR (ρ = 0.380; P = 0.0157). MHR was related with fibrinogen (ρ = 0.426; P = 0.0010), arterial hypertension (ρ = 0.274; P = 0.0251), C-reactive protein (ρ = 0.332; P = 0.0061), gender (ρ = - 0.375; P = 0.0017; 0 = male, 1 = female), and CKD stage (ρ = 0.260; P = 0.0337). A multiple regression analysis suggested that indole-3-acetic acid might be an independent predictor of MHR. CONCLUSION This study shows a significant association between indole-3-acetic acid and MHR. Prospective studies are required to evaluate if decreasing indole-3-acetic acid concentrations may reduce MHR levels and cardiovascular events and improve clinical outcomes.
Collapse
Affiliation(s)
- Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Corsaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Rosalia Maria Cigala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta De Stefano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Adolfo Romeo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Salvatore Benvenga
- Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| |
Collapse
|
3
|
Karalexi MA, Tagkas CF, Markozannes G, Tseretopoulou X, Hernández AF, Schüz J, Halldorsson TI, Psaltopoulou T, Petridou ET, Tzoulaki I, Ntzani EE. Exposure to pesticides and childhood leukemia risk: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117376. [PMID: 34380208 DOI: 10.1016/j.envpol.2021.117376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Despite the abundance of epidemiological evidence concerning the association between pesticide exposure and adverse health outcomes including acute childhood leukemia (AL), evidence remains inconclusive, and is inherently limited by heterogeneous exposure assessment and multiple statistical testing. We performed a literature search of peer-reviewed studies, published until January 2021, without language restrictions. Summary odds ratios (OR) and 95% confidence intervals (CI) were derived from stratified random-effects meta-analyses by type of exposure and outcome, exposed populations and window of exposure to address the large heterogeneity of existing literature. Heterogeneity and small-study effects were also assessed. We identified 55 eligible studies (n = 48 case-control and n = 7 cohorts) from over 30 countries assessing >200 different exposures of pesticides (n = 160,924 participants). The summary OR for maternal environmental exposure to pesticides (broad term) during pregnancy and AL was 1.88 (95%CI: 1.15-3.08), reaching 2.51 for acute lymphoblastic leukemia (ALL; 95%CI: 1.39-4.55). Analysis by pesticide subtype yielded an increased risk for maternal herbicide (OR: 1.41, 95%CI: 1.00-1.99) and insecticide (OR: 1.60, 95%CI: 1.11-2.29) exposure during pregnancy and AL without heterogeneity (p = 0.12-0.34). Meta-analyses of infant leukemia were only feasible for maternal exposure to pesticides during pregnancy. Higher magnitude risks were observed for maternal pesticide exposure and infant ALL (OR: 2.18, 95%CI: 1.44-3.29), and the highest for infant acute myeloid leukemia (OR: 3.42, 95%CI: 1.98-5.91). Overall, the associations were stronger for maternal exposure during pregnancy compared to childhood exposure. For occupational or mixed exposures, parental, and specifically paternal, pesticide exposure was significantly associated with increased risk of AL (ORparental: 1.75, 95%CI: 1.08-2.85; ORpaternal: 1.20, 95%CI: 1.07-1.35). The epidemiological evidence, supported by mechanistic studies, suggests that pesticide exposure, mainly during pregnancy, increases the risk of childhood leukemia, particularly among infants. Sufficiently powered studies using repeated biomarker analyses are needed to confirm whether there is public health merit in reducing prenatal pesticide exposure.
Collapse
Affiliation(s)
- Maria A Karalexi
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Greece
| | - Christos F Tagkas
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Greece
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Greece
| | - Xanthippi Tseretopoulou
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Greece; Department of Pediatric Endocrinology, Addenbrooke's Hospital, Cambridge, UK
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Avenida de La Investigación 11, 18016, Granada, Spain
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Thorhallur I Halldorsson
- Unit for Nutrition Research, Landspitali, The National University Hospital of Iceland and Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Eiriksgata 29, 101, Reykjavik, Iceland; Department of Epidemiology Research, Centre for Fetal Programming, Statens Serum Institut, 5, Artillerivej, 2300, Copenhagen S, Denmark
| | - Theodora Psaltopoulou
- Department of Hygiene, Epidemiology, and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Th Petridou
- Department of Hygiene, Epidemiology, and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Tzoulaki
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Greece; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Evangelia E Ntzani
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Greece; Center for Evidence Synthesis in Health, Brown University School of Public Health, Providence, RI, USA; Institute of Biosciences, University Research Center of Loannina, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
4
|
Cernaro V, Loddo S, Macaione V, Ferlazzo VT, Cigala RM, Crea F, De Stefano C, Genovese ARR, Gembillo G, Bolignano D, Santoro D, Vita R, Buemi M, Benvenga S. RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. Int Urol Nephrol 2020; 52:1125-1133. [PMID: 32314169 DOI: 10.1007/s11255-020-02469-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Kynurenine pathway of tryptophan metabolism is involved in the pathophysiology of chronic kidney disease (CKD) and diabetes mellitus, mainly through the inflammation-induced activity of indoleamine 2,3-dioxygenase (IDO), and few studies have investigated its potential link with proteinuria. Renin-angiotensin system inhibitors (RASis) are recommended in these patients to decrease proteinuria, slow CKD progression and reduce cardiovascular risk, but whether these drugs influence kynurenine levels in humans is unknown. We evaluated serum tryptophan and kynurenine in patients suffering from CKD with or without type 2 diabetes mellitus, their correlations with markers of reduced kidney function, and their relationship with RAS-inhibiting therapy. Of 72 adult patients enrolled, 55 were receiving RASis, whereas 17 were not. Tryptophan was assessed by HPLC (high-performance liquid chromatography); kynurenine was measured using an enzyme-linked immunosorbent assay kit; IDO activity (%) was calculated with the formula (kynurenine/tryptophan) × 100. Kynurenine levels were significantly lower in the group under RASis compared to the untreated group (1.56 ± 0.79 vs 2.16 ± 1.51 µmol/l; P = 0.0378). In patients not receiving RASis, kynurenine was inversely related to estimated glomerular filtration rate (eGFR) (r = - 0.4862; P = 0.0478) and directly related to both proteinuria (ρ = 0.493; P = 0.0444) and albuminuria (ρ = 0.542; P = 0.0247). IDO activity was higher in patients with history of cardiovascular disease compared to patients with no such history, and it negatively correlated with eGFR (ρ = - 0.554; P = 0.0210) in the same group. These findings may contribute to explain the well-known beneficial effects of RAS inhibition in CKD population, especially considering that kynurenine is emerging as a potential new biomarker of CKD.
Collapse
Affiliation(s)
- Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Rosalia Maria Cigala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta De Stefano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonina Rita Rosalia Genovese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Roberto Vita
- Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Salvatore Benvenga
- Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| |
Collapse
|
5
|
Humphrey KM, Pandey S, Martin J, Hagoel T, Grand'Maison A, Ohm JE. Establishing a role for environmental toxicant exposure induced epigenetic remodeling in malignant transformation. Semin Cancer Biol 2019; 57:86-94. [PMID: 30453042 PMCID: PMC6522338 DOI: 10.1016/j.semcancer.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023]
Abstract
Humans are exposed to a wide variety of environmental exposures throughout their lifespan. These include both naturally occurring toxins and chemical toxicants like pesticides, herbicides, and industrial chemicals, many of which have been implicated as possible contributors to human disease susceptibility [1-3]. We, and others, have hypothesized that environmental exposures may cause adaptive epigenetic changes in regenerative cell populations and developing organisms, leading to abnormal gene expression and increased disease susceptibility later in life [3]. Common epigenetic changes include changes in miRNA expression, covalent histone modifications, and methylation of DNA. Importantly, due to their heritable nature, abnormal epigenetic modifications which occur within stem cells may be particularly deleterious. Abnormal epigenetic changes in regenerative cell linages can be passed onto a large population of daughter cells and can persist for long periods of time. It is well established that an accumulation of epigenetic changes can lead to many human diseases including cancer [4-6]. Subsequently, it is imperative that we increase our understanding of how common environmental toxins and toxicants can induce epigenetic changes, particularly in stem cell populations. In this review, we will discuss how common environmental exposures in the United States and around the world may lead to epigenetic changes and discuss potential links to human disease, including cancer.
Collapse
Affiliation(s)
- Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Sumali Pandey
- Minnesota State University Moorhead, Moorhead, MN, United States
| | - Jeffery Martin
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Tamara Hagoel
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Anne Grand'Maison
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
6
|
Cerezo AB, Hornedo-Ortega R, Álvarez-Fernández MA, Troncoso AM, García-Parrilla MC. Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds. Nutrients 2017; 9:nu9030249. [PMID: 28282869 PMCID: PMC5372912 DOI: 10.3390/nu9030249] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/17/2022] Open
Abstract
Excessive concentrations of vascular endothelial growth factor (VEGF) trigger angiogenesis, which causes complications such as the destabilization of atherosclerotic plaques and increased growth of tumors. This work focuses on the determination of the inhibitory activity of melatonin and other indolic related compounds on VEGF-induced VEGF receptor-2 (VEGFR-2) activation and an approximation to the molecular mechanism underlying the inhibition. Quantification of phosphorylated VEGFR-2 was measured by ELISA. Migration wound-healing assay was used to determine cell migration of human umbilical vein endothelial cells (HUVECs). This is the first time that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin are proved to significantly inhibit VEGF-induced VEGFR-2 activation in human umbilical vein endothelial cells and subsequent angiogenesis. 3-Indolacetic acid showed the highest inhibitory effect (IC50 value of 0.9704 mM), followed by 5-hydroxytryptophol (35% of inhibition at 0.1 mM), melatonin (30% of inhibition at 1 mM), and serotonin (24% of inhibition at 1 mM). An approximation to the molecular mechanism of the inhibition has been proposed, suggesting that indolic compounds might interact with the cell surface components of the endothelial membrane in a way that prevents VEGF from activating the receptor. Additionally, wound-healing assay revealed that exposure of HUVECs to melatonin and 3-indolacetic acid in the presence of VEGF significantly inhibited cell migration by 87% and 99%, respectively, after 24 h. These data demonstrate that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin would be good molecules for future exploitation as anti-VEGF signaling agents.
Collapse
Affiliation(s)
- Ana B Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - M Antonia Álvarez-Fernández
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| | - M Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González s/n, 41012 Sevilla, Spain.
| |
Collapse
|