1
|
Watanabe J, Kotani K, Gugliucci A. Paraoxonase 1 and Chronic Kidney Disease: A Meta-Analysis. J Clin Med 2023; 12:jcm12031199. [PMID: 36769846 PMCID: PMC9917420 DOI: 10.3390/jcm12031199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is known to be associated with the pathophysiology of chronic kidney disease (CKD). Paraoxonase 1 (PON1) is an antioxidant enzyme that has been proposed as a biomarker for CKD. While several studies have reported an association between serum PON1 activity and CKD, consensus based on systematically analyzed data remains necessary. We set out to conduct a meta-analysis of literature on PON1 in CKD. Electronic databases, such as MEDLINE, Embase and CENTRAL, were searched for available studies on PON1 activity in patients with CKD (without dialysis) as published before December 2022. A random-effects meta-analysis was performed. In total, 24 studies (22 studies on paraoxonase and 11 on arylesterase activity) were eligibly identified. Patients with CKD showed a lower activity of paraoxonase (standard mean difference [SMD], -1.72; 95% confidence interval [CI], -2.15 to -1.29) and arylesterase (SMD, -2.60; 95%CI, -3.96 to -1.24) than healthy controls. In the subgroup analyses, paraoxonase activity was lower in chronic kidney failure (CKF), an advanced stage of CKD, than in non-CKF. In summary, PON1 activity is low in patients with CKD, suggesting that the antioxidant defense by PON1 is impaired in CKD. The decrease in enzyme activity is pronounced in advanced CKD showing some variability depending on the substrate employed to measure PON1 activity. Further studies are warranted.
Collapse
Affiliation(s)
- Jun Watanabe
- Division of Community and Family Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City 329-0498, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City 329-0498, Japan
- Correspondence: ; Tel.: +81285-58-7394; Fax: +81285-44-0628
| | - Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Touro University-California, Vallejo, CA 94592, USA
| |
Collapse
|
2
|
Han J, Wang K. Clinical significance of serum hepcidin in the diagnosis and treatment of patients with anemia of chronic disease: a meta-analysis. Biomarkers 2021; 26:296-301. [PMID: 33653208 DOI: 10.1080/1354750x.2021.1893812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To systematically evaluate the value of serum hepcidin in the diagnosis of Anaemia of Chronic Disease (ACD) in order to provide appropriate treatment. METHODS Literature search was performed in PubMed, EMbase, Cochrane Library, CNKI, CBMdisc and CSPD till Jan, 2020. Studies using hepcidin assay for the diagnosis of ACD were included. Two researchers selected the literature according to the pre-defined inclusion and exclusion criteria. Meta-analysis was performed using Stata 15.0. RESULTS A total of 10 studies were included, including 739 patients with 402 ACD patients. Heterogeneity test results suggest that there is no statistical heterogeneity between the included studies and Meta- analysis was performed using a fixed-effects model. Results showed that serum hepcidin levels in patients with ACD combined with SEN, SPE, PLR, NLR, and Diagnostic OR were 0.94 [95% CI (0.90, 0.96)], 0.85 [95% CI (0.81, 0.88)], 6.1 [95% CI (4.8, 7.6)], 0.08 [95% CI (0.05, 0.12)] and 81 [95% CI (47, 139)] respectively. The area under the SROC curve (AUC) value was 0.91. CONCLUSION Serum hepcidin assay is a valuable method to diagnose ACD in patients. However, due to the limitations of the quantity and quality of the research, the above conclusions need more research to verify.
Collapse
Affiliation(s)
- Jie Han
- Department of Hepatology, Qilu Hospital of Shandong University and Hepatology Institute of Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University and Hepatology Institute of Shandong University, Jinan, China
| |
Collapse
|
3
|
Didas N, Thitisopee W, Porntadavity S, Jeenduang N. Arylesterase activity but not PCSK9 levels is associated with chronic kidney disease in type 2 diabetes. Int Urol Nephrol 2020; 52:1725-1732. [PMID: 32661629 DOI: 10.1007/s11255-020-02547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Oxidative stress and dyslipidemia have been found to be associated with the progression of chronic kidney disease (CKD) in type 2 diabetes mellitus (T2DM) patients. Paraoxonase 1 (PON-1) activity, and proprotein convertase subtilisin kexin type 9 (PCSK9) levels play an important role regarding anti-oxidants, and lipid metabolism, respectively. The aim of this study was to investigate the association of PON-1 activity, and PCSK9 levels with CKD in T2DM. METHODS A total of 180 T2DM (87 CKD, and 93 non-CKD) with age-, and gender-matched subjects were recruited in this study. PON-1 activity was measured with two kinds of substrate: paraoxon for paraoxonase (PONase) activity and phenylacetate for arylesterase (AREase) activity. PCSK9 levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS AREase activity was significantly lower in CKD compared with non-CKD (225.53 ± 108.73 vs. 257.45 ± 106.12 kU/L, p = 0.044) in T2DM, whereas there was no significant difference in PONase activity and PCSK9 levels between CKD and non-CKD groups. In addition, multivariate logistic regression analysis showed that the lowest tertile of AREase increased the risk for CKD in T2DM (OR 3.251; 95% CI 1.333-7.926, p = 0.010), whereas PONase activity and PCSK9 levels were not associated with CKD in T2DM. CONCLUSION Reduced AREase activity can increase the risk for CKD in T2DM patients. AREase activity, but not PONase activity and PCSK9 levels, may be used as the biomarker for predicting the progression of CKD in T2DM.
Collapse
Affiliation(s)
- Nutsiwat Didas
- School of Allied Health Sciences, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, Thailand
| | | | - Sureerut Porntadavity
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Nutjaree Jeenduang
- School of Allied Health Sciences, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
4
|
Reichert CO, de Macedo CG, Levy D, Sini BC, Monteiro AM, Gidlund M, Maselli LMF, Gualandro SFM, Bydlowski SP. Paraoxonases (PON) 1, 2, and 3 Polymorphisms and PON-1 Activities in Patients with Sickle Cell Disease. Antioxidants (Basel) 2019; 8:E252. [PMID: 31366068 PMCID: PMC6720480 DOI: 10.3390/antiox8080252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Oxidative stress, chronic inflammation, vasoocclusion, and free iron are all features present in sickle cell disease. Paraoxonases (PON) are a family (PON-1, PON-2, PON-3) of antioxidant enzymes with anti-inflammatory action. Here, for the first time, we described PON-1 activities and PON-1, PON-2, PON-3 polymorphisms in patients with sickle cell disease, homozygous for HbSS, compared with healthy controls. (2) Methods: The groups were matched for age and gender. PON-1 activities (arylesterase and paraoxonase) were determined by enzymatic hydrolysis of phenylcetate and paraoxon, respectively. Polymorphisms were determined by Restriction Fragment Length Polymorphism- Polymerase Chain Reaction (RFLP-PCR). (3) Results: Plasma cholesterol and fractions, ApoA1 and ApoB levels were all decreased in sickle cell disease patients, while anti-oxidized low-density lipoprotein (LDL) antibodies and C-reactive protein were increased. Serum arylesterase activity was lower in sickle cell disease patients when compared with healthy controls. In patients, paraoxonase activity was higher in those with PON-1 RR Q192R polymorphism. In these patients, the increase of serum iron and ferritin levels and transferrin saturation were less pronounced than those observed in patients with QQ or QR polymorphism. No differences were observed with PON-1 L55M, and PON-2 and PON-3 polymorphisms. Multivariate regression analysis showed that transferrin and ferritin concentrations correlated with arylesterase and paraoxonase activities. (4) Conclusions: Both transferrin and ferritin were the main predictors of decreased arylesterase and paraoxonase activities in patients with sickle cell disease. LDL oxidation increased, and RR PON-1 Q192R polymorphism is likely to be a protective factor against oxidative damage in these patients.
Collapse
Affiliation(s)
- Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Carolina Garcia de Macedo
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Bruno Carnevale Sini
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | - Andréia Moreira Monteiro
- Department of Immunology, Institute of Biomedical Sciences, Universidade de Sao Paulo, 05508-000 Sao Paulo, Brazil
| | - Magnus Gidlund
- Department of Immunology, Institute of Biomedical Sciences, Universidade de Sao Paulo, 05508-000 Sao Paulo, Brazil
| | - Luciana Morganti Ferreira Maselli
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil
| | | | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, 05403-900 Sao Paulo, Brazil.
- Center of Innovation and Translational Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, 05360-130 Sao Paulo, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|