1
|
Cui G, Xiao Y. Identification of SAA1 as a prognostic biomarker associated with immune infiltration in glioblastoma. Autoimmunity 2022; 55:418-427. [PMID: 35574600 DOI: 10.1080/08916934.2022.2076085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gang Cui
- Department of Neurosurgery, The Affiliated Hospital of Shangdong University of Traditional Chinese Medicine, Shangdong, People’s Republic of China
| | - Youchao Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Kuret T, Lakota K, Mali P, Čučnik S, Praprotnik S, Tomšič M, Sodin-Semrl S. Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. PLoS One 2018; 13:e0195346. [PMID: 29617422 PMCID: PMC5884545 DOI: 10.1371/journal.pone.0195346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262–1.293) and 0.493 (0.284–0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41–50 years, then diminished with age in the oldest group (51–67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
- * E-mail:
| |
Collapse
|
3
|
Li W, Zhu S, Li J, D'Amore J, D'Angelo J, Yang H, Wang P, Tracey KJ, Wang H. Serum Amyloid A Stimulates PKR Expression and HMGB1 Release Possibly through TLR4/RAGE Receptors. Mol Med 2015; 21:515-25. [PMID: 26052716 DOI: 10.2119/molmed.2015.00109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A (SAA) proteins are known to be surrogate markers of sepsis, but their pathogenic roles remain poorly elucidated. Here we provide evidence to support a possible role of SAA as a pathogenic mediator of lethal sepsis. In a subset of septic patients for which serum high mobility group box 1 (HMGB1) levels paralleled the clinical scores, some anti-HMGB1 antibodies detected a 12-kDa protein belonging to the SAA family. In contrast to the most abundant SAA1, human SAA induced double-stranded RNA-activated protein kinase R (PKR) expression and HMGB1 release in the wild-type, but not toll-like receptor 4/receptor for advanced glycation end products (TLR4/RAGE)-deficient, macrophages. Pharmacological inhibition of PKR phosphorylation blocked SAA-induced HMGB1 release, suggesting an important role of PKR in SAA-induced HMGB1 release. In animal models of lethal endotoxemia and sepsis, recombinant SAA exacerbated endotoxemic lethality, whereas SAA-neutralizing immunoglobulins G (IgGs) significantly improved animal survival. Collectively, these findings have suggested SAA as an important mediator of inflammatory diseases. Highlights of this study include: human SAA is possibly only expressed in a subset of septic patients; SAA induces HMGB1 release via TLR4 and RAGE receptors; SAA supplementation worsens the outcome of lethal endotoxemia; whereas SAA-neutralizing antibodies confer protection against lethal endotoxemia and sepsis.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Shu Zhu
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jason D'Amore
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - John D'Angelo
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America
| | - Huan Yang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ping Wang
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, United States of America.,The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
4
|
Kulkarni M, Flašker A, Lokar M, Mrak-Poljšak K, Mazare A, Artenjak A, Čučnik S, Kralj S, Velikonja A, Schmuki P, Kralj-Iglič V, Sodin-Semrl S, Iglič A. Binding of plasma proteins to titanium dioxide nanotubes with different diameters. Int J Nanomedicine 2015; 10:1359-73. [PMID: 25733829 PMCID: PMC4340467 DOI: 10.2147/ijn.s77492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices.
Collapse
Affiliation(s)
- Mukta Kulkarni
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Ajda Flašker
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Maruša Lokar
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Katjuša Mrak-Poljšak
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anca Mazare
- Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany
| | - Andrej Artenjak
- Sandoz Biopharmaceuticals Mengeš, Lek Pharmaceuticals dd, Menges, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Institute Jožef Stefan (IJS), Ljubljana, Slovenia
| | - Aljaž Velikonja
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Patrik Schmuki
- Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany
| | | | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technology, University of Primorska, Koper, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
O'Reilly S, Cant R, Ciechomska M, Finnigan J, Oakley F, Hambleton S, van Laar JM. Serum amyloid A induces interleukin-6 in dermal fibroblasts via Toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κB. Immunology 2014; 143:331-40. [PMID: 24476318 DOI: 10.1111/imm.12260] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis is an autoimmune idiopathic connective tissue disease, characterized by vasculopathy, inflammation and fibrosis. There appears to be a link between inflammation and fibrosis, although the exact nature of the relationship is unknown. Serum amyloid A (SAA) is an acute-phase protein that is elevated up to 1000-fold in times of infection or inflammation. This acute-phase reactant, as well as being a marker of inflammation, may initiate signals in a cytokine-like manner, possibly through toll-like receptors (TLRs) promoting inflammation. This study addressed the role of SAA in initiating interleukin-6 (IL-6) production in dermal fibroblasts and the role of TLR2 in this system. We show that SAA induces IL-6 secretion in healthy dermal fibroblasts and that blockade of TLR2 with a neutralizing antibody to TLR2 or specific small interfering RNA attenuated the SAA-induced IL-6 secretion and that this was also mediated through the TLR adaptor protein IL-1 receptor-associated kinase 4. The effect is nuclear factor-κB-mediated because blockade of nuclear factor-κB reduced the induction. We also demonstrate that dermal fibroblasts express TLR2; this is functional and over-expressed in the fibroblasts of patients with systemic sclerosis. Taken together these data suggest that SAA is a danger signal that initiates IL-6 signalling in systemic sclerosis via enhanced TLR2 signalling.
Collapse
Affiliation(s)
- Steven O'Reilly
- Musculoskeletal Research Group, Institute of Cellular Medicine, Middlesbrough, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Sjöwall C, Olin AI, Skogh T, Wetterö J, Mörgelin M, Nived O, Sturfelt G, Bengtsson AA. C-reactive protein, immunoglobulin G and complement co-localize in renal immune deposits of proliferative lupus nephritis. Autoimmunity 2013; 46:205-14. [DOI: 10.3109/08916934.2013.764992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Attempts at suppression of amyloidogenesis in a mouse model by a variety of anti-inflammatory agents. Autoimmun Rev 2012; 12:18-21. [DOI: 10.1016/j.autrev.2012.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Uropathogenic Escherichia coli induces serum amyloid a in mice following urinary tract and systemic inoculation. PLoS One 2012; 7:e32933. [PMID: 22427910 PMCID: PMC3299708 DOI: 10.1371/journal.pone.0032933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 02/03/2012] [Indexed: 12/28/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein involved in the homeostasis of inflammatory responses and appears to be a vital host defense component with protective anti-infective properties. SAA expression remains poorly defined in many tissues, including the urinary tract which often faces bacterial challenge. Urinary tract infections (UTIs) are usually caused by strains of uropathogenic Escherichia coli (UPEC) and frequently occur among otherwise healthy individuals, many of whom experience bouts of recurrent and relapsing infections despite the use of antibiotics. To date, whether SAA is present in the infected urothelium and whether or not the induction of SAA can protect the host against UPEC is unclear. Here we show, using mouse models coupled with immunofluorescence microscopy and quantitative RT-PCR, that delivery of UPEC either directly into the urinary tract via catheterization or systemically via intraperitoneal injection triggers the expression of SAA. As measured by ELISA, serum levels of SAA1/2 were also transiently elevated in response to UTI, but circulating SAA3 levels were only up-regulated substantially following intraperitoneal inoculation of UPEC. In in vitro assays, physiological relevant levels of SAA1/2 did not affect the growth or viability of UPEC, but were able to block biofilm formation by the uropathogens. We suggest that SAA functions as a critical host defense against UTIs, preventing the formation of biofilms both upon and within the urothelium and possibly providing clinicians with a sensitive serological marker for UTI.
Collapse
|
9
|
Colocalization of serum amyloid a with microtubules in human coronary artery endothelial cells. J Biomed Biotechnol 2011; 2011:528276. [PMID: 22131810 PMCID: PMC3205747 DOI: 10.1155/2011/528276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/06/2011] [Indexed: 01/08/2023] Open
Abstract
Serum amyloid A (SAA) acts as a major acute phase protein and represents a sensitive and accurate marker of inflammation. Besides its hepatic origin, as the main source of serum SAA, this protein is also produced extrahepatically. The mRNA levels of SAA become significantly elevated following proinflammatory stimuli, as well as, are induced through their own positive feedback in human primary coronary artery endothelial cells. However, the intracellular functions of SAA are so far unknown. Colocalization of SAA with cytoskeletal filaments has previously been proposed, so we analyzed the colocalization of SAA with all three cytoskeletal elements: actin filaments, vimentin filaments, and microtubules. Immunofluorescent double-labeling analyses confirmed by PLA method revealed a strict colocalization of SAA with microtubules and a very infrequent attachment to vimentin while the distribution of actin filaments appeared clearly separated from SAA staining. Also, no significant colocalization was found between SAA and endomembranes labeled with the fluorescent lipid stain DiO6. However, SAA appears to be located also unbound in the cytosol, as well as inside the nucleus and within nanotubes extending from the cells or bridging neighboring cells. These different locations of SAA in endothelial cells strongly indicate multiple potential functions of this protein.
Collapse
|
10
|
Lakota K, Zigon P, Mrak-Poljsak K, Rozman B, Shoenfeld Y, Sodin-Semrl S. Antibodies against acute phase proteins and their functions in the pathogenesis of disease: A collective profile of 25 different antibodies. Autoimmun Rev 2011; 10:779-89. [DOI: 10.1016/j.autrev.2011.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 01/09/2023]
|