1
|
Xu Y, Nie J, Lu C, Hu C, Chen Y, Ma Y, Huang Y, Lu L. Effects and mechanisms of bisphenols exposure on neurodegenerative diseases risk: A systemic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170670. [PMID: 38325473 DOI: 10.1016/j.scitotenv.2024.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Environmental bisphenols (BPs) pose a global threat to human health because of their extensive use as additives in plastic products. BP residues are increasing in various environmental media (i.e., water, soil, and indoor dust) and biological and human samples (i.e., serum and brain). Both epidemiological and animal studies have determined an association between exposure to BPs and an increased risk of neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis), including cognitive abnormalities and behavioral disturbances. Hence, understanding the biological responses to different BPs is essential for prevention, and treatment. This study provides an overview of the underlying pathogenic molecular mechanisms as a valuable basis for understanding neurodegenerative disease responses to BPs, including accumulation of misfolded proteins, reduction of tyrosine hydroxylase and dopamine, abnormal hormone signaling, neuronal death, oxidative stress, calcium homeostasis, and inflammation. These findings provide new insights into the neurotoxic potential of BPs and ultimately contribute to a comprehensive health risk evaluation.
Collapse
Affiliation(s)
- Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Nie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenghao Lu
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunlu Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying Ma
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuru Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Huang RG, Li XB, Wang YY, Wu H, Li KD, Jin X, Du YJ, Wang H, Qian FY, Li BZ. Endocrine-disrupting chemicals and autoimmune diseases. ENVIRONMENTAL RESEARCH 2023; 231:116222. [PMID: 37224951 DOI: 10.1016/j.envres.2023.116222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) widely exist in people's production and life which have great potential to damage human and animal health. Over the past few decades, growing attention has been paid to the impact of EDCs on human health, as well as immune system. So far, researchers have proved that EDCs (such as bisphenol A (BPA), phthalate, tetrachlorodibenzodioxin (TCDD), etc.) affect human immune function and promotes the occurrence and development of autoimmune diseases (ADs). Therefore, in order to better understand how EDCs affect ADs, we summarized the current knowledge about the impact of EDCs on ADs, and elaborated the potential mechanism of the impact of EDCs on ADs in this review.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | | | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
3
|
Bonaldo B, Casile A, Montarolo F, Bettarelli M, Napoli F, Gotti S, Panzica G, Marraudino M. Effects of perinatal exposure to bisphenol A or S in EAE model of multiple sclerosis. Cell Tissue Res 2023; 392:467-480. [PMID: 36750500 PMCID: PMC10172280 DOI: 10.1007/s00441-023-03746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Epidemiological studies support the idea that multiple sclerosis (MS) is a multifactorial disease, overlapping genetic, epigenetic, and environmental factors. A better definition of environmental risks is critical to understand both etiology and the sex-related differences of MS. Exposure to endocrine-disrupting compounds (EDCs) fully represents one of these risks. EDCs are natural or synthetic exogenous substances (or mixtures) that alter the functions of the endocrine system. Among synthetic EDCs, exposure to bisphenol A (BPA) has been implicated in the etiology of MS, but to date, controversial data has emerged. Furthermore, nothing is known about bisphenol S (BPS), one of the most widely used substitutes for BPA. As exposure to bisphenols will not disappear soon, it is necessary to clarify their role also in this pathological condition defining their role in disease onset and course in both sexes. In this study, we examined, in both sexes, the effects of perinatal exposure to BPA and BPS in one of the most widely used mouse models of MS, experimental autoimmune encephalomyelitis (EAE). Exposure to bisphenols seemed to be particularly deleterious in males. In fact, both BPA- and BPS-treated males showed anticipation of the disease onset and an increased motoneuron loss in the spinal cord. Overall, BPA-treated males also displayed an exacerbation of EAE course and an increase in inflammation markers in the spinal cord. Analyzing the consequences of bisphenol exposure on EAE will help to better understand the role of both xenoestrogens and endogenous estrogens on the sexually dimorphic characteristics of MS.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy.
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043, Orbassano, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| |
Collapse
|
4
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
5
|
Popescu M, Feldman TB, Chitnis T. Interplay Between Endocrine Disruptors and Immunity: Implications for Diseases of Autoreactive Etiology. Front Pharmacol 2021; 12:626107. [PMID: 33833678 PMCID: PMC8021784 DOI: 10.3389/fphar.2021.626107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The sex-bias of disease susceptibility has remained a puzzling aspect of several autoimmune conditions, including post-infection viral autoimmunity. In the last half of the twentieth century, the incidence rate of female-biased autoimmunity has steadily increased independent of medical advances. This has suggested a role for environmental factors, such as endocrine disrupting chemicals, which have been described to interfere with endocrine signaling. Endocrine involvement in the proper function of innate and adaptive immunity has also been defined, however, these two areas have rarely been reviewed in correlation. In addition, studies addressing the effects of endocrine disruptors have reported findings resulting from a broad range of exposure doses, schedules and models. This experimental heterogeneity adds confusion and may mislead the translation of findings to human health. Our work will normalize results across experiments and provide a necessary summary relevant to human exposure. Through a novel approach, we describe how different categories of ubiquitously used environmental endocrine disruptors interfere with immune relevant endocrine signaling and contribute to autoimmunity. We hope this review will guide identification of mechanisms and concentration-dependent EDC effects important not only for the sex-bias of autoimmunity, but also for other conditions of immune dysfunction, including post-infection autoreactivity such as may arise following severe acute respiratory syndrome coronavirus 2, Epstein-Barr virus, Herpes Simplex virus.
Collapse
Affiliation(s)
- Maria Popescu
- Harvard Medical School, Boston, MA, United States.,Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Talia B Feldman
- Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States.,Brigham Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Sharif K, Kurnick A, Coplan L, Alexander M, Watad A, Amital H, Shoenfeld Y. The Putative Adverse Effects of Bisphenol A on Autoimmune Diseases. Endocr Metab Immune Disord Drug Targets 2021; 22:665-676. [PMID: 33568039 DOI: 10.2174/1871530321666210210154309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA) is a monomer that is widely used in the manufacture of polycarbonate plastics including storage plastics and baby bottles, and is considered one of the most widely used synthetic compounds in the manufacturing industry. Exposure to BPA mainly occurs after oral ingestion and results from leaks into food and water from plastic containers and according to epidemiological data exposure is widespread and estimated to occur in 90% of individuals. BPA exertspleiotropiceffects and demonstrates estrogen like effects, thus considered an endocrine disrupting chemical. Growing body of evidence highlight the role of BPA in modulating immune responses and signaling pathways resulting in a proinflammatory response by enhancing the differential polarization of immune cells and cytokine production profile to one that is consistent with proinflammation. Indeed, epidemiological studies have uncovered associations between several autoimmune diseases and BPA exposure. Data from animal models provided consistent evidence highlighting the role of BPA in the pathogenesis, exacerbation and perpetuation of various autoimmune phenomena including neuroinflammation in the context of multiple sclerosis, colitis in inflammatory bowel disease, nephritis in systemic lupus erythematosus, and insulitis in type 1 diabetes mellitus. Given the wide spread of BPA use and its effects in immune systemdysregulation, a call for careful assessment of patients' risks and for public health measures are needed to limit exposure and subsequent deleterious effects. The purpose of this paper is to explore the autoimmune triggering mechanisms and present the current literature supporting the role of BPA in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Kassem Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Adam Kurnick
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | | | - Abdulla Watad
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Howard Amital
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv. Israel
| |
Collapse
|
7
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
8
|
Bisphenol A triggers axonal injury and myelin degeneration with concomitant neurobehavioral toxicity in C57BL/6J male mice. Toxicology 2019; 428:152299. [PMID: 31574244 DOI: 10.1016/j.tox.2019.152299] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is a ubiquitously distributed endocrine disrupting chemical (EDC). BPA exposure in humans has been a matter of concern due to its increased application in the products of day to day use. BPA has been reported to cause toxicity in almost all the vital organ systems even at a very low dose levels. It crosses the blood brain barrier and causes neurotoxicity. We studied the effect of BPA on the cerebral cortex of C57BL/6J mice and examined whether BPA exposure alters the expression of axonal and myelin structural proteins. Male mice were dosed orally to 40 μg and 400 μg BPA/kg body weight for 60 days. BPA exposure resulted in memory loss, muscle coordination deficits and allodynia. BPA exposure also caused degeneration of immature and mature oligodendrocytes as evaluated by decreased mRNA levels of 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), nestin, myelin basic protein (MBP) and myelin-associated glycoprotein-1 (MAG-1) genes revealing myelin related pathology. It was observed that subchronic BPA exposure caused neuroinflammation through deregulation of inflammatory cytokines mRNA and protein expression which further resulted into neurotoxicity through axonal as well as myelin degeneration in the brain. BPA also caused increased oxidative stress in the brain. Our study indicates long-term subchronic low dose exposure to BPA has the potential to cause axonal degeneration and demyelination in the oligodendrocytes and neurons which may have implications in neurological and neuropsychological disorders including multiple sclerosis (MS), neuromyelitis optica and others.
Collapse
|
9
|
Rychlik KA, Sillé FCM. Environmental exposures during pregnancy: Mechanistic effects on immunity. Birth Defects Res 2019; 111:178-196. [PMID: 30708400 DOI: 10.1002/bdr2.1469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In human studies, it is well established that exposures during embryonic and fetal development periods can influence immune health. Coupled with genetic predisposition, these exposures can alter lifetime chronic and infectious disease trajectory, and, ultimately, life expectancy. Fortunately, as research advances, mechanisms governing long-term effects of prenatal exposures are coming to light and providing the opportunity for intervention and risk reduction. For instance, human association studies have provided a foundation for the association of prenatal exposure to particulate matter with early immunosuppression and later allergic disease in the offspring. Only recently, the mechanisms mediating this response have been revealed and there is much we have yet to discover. Although cellular immune response is understood for many exposure scenarios, molecular pathways are still unidentified. This review will provide commentary and synthesis of the current literature regarding environmental exposures during pregnancy and mechanisms determining immune outcomes. Shared mechanistic features and current gaps in the state of the science are identified and discussed. To such purpose, we address exposures by their immune effect type: immunosuppression, autoimmunity, inflammation and tissue damage, hypersensitivity, and general immunomodulation.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
10
|
Aljadeff G, Longhi E, Shoenfeld Y. Bisphenol A: A notorious player in the mosaic of autoimmunity. Autoimmunity 2018; 51:370-377. [DOI: 10.1080/08916934.2018.1551374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gali Aljadeff
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Eleonora Longhi
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- University of Bologna School of Medicine, Bologna, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
DeLuca JAA, Allred KF, Menon R, Riordan R, Weeks BR, Jayaraman A, Allred CD. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp Biol Med (Maywood) 2018; 243:864-875. [PMID: 29874946 PMCID: PMC6022909 DOI: 10.1177/1535370218782139] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease is a complex collection of disorders. Microbial dysbiosis as well as exposure to toxins including xenoestrogens are thought to be risk factors for inflammatory bowel disease development and relapse. Bisphenol-A has been shown to exert estrogenic activity in the colon and alter intestinal function, but the role that xenoestrogens, such as bisphenol-A , play in colonic inflammation has been previously described but with conflicting results. We investigated the ability of bisphenol-A to exacerbate colonic inflammation and alter microbiota metabolites derived from aromatic amino acids in an acute dextran sulfate sodium-induced colitis model. Female C57BL/6 mice were ovariectomized and exposed to bisphenol-A daily for 15 days. Disease activity measures include body weight, fecal consistency, and rectal bleeding. Colons were scored for inflammation, injury, and nodularity. Alterations in the levels of microbiota metabolites derived from aromatic amino acids known to reflect phenotypic changes in the gut microbiome were analyzed. Bisphenol-A exposure increased mortality and worsened disease activity as well as inflammation and nodularity scores in the middle colon region following dextran sulfate sodium exposure. Unique patterns of metabolites were associated with bisphenol-A consumption. Regardless of dextran sulfate sodium treatment, bisphenol-A reduced levels of tryptophan and several metabolites associated with decreased inflammation in the colon. This is the first study to show that bisphenol-A treatment alone can reduce microbiota metabolites derived from aromatic amino acids in the colon which may be associated with increased colonic inflammation and inflammatory bowel disease. Impact statement As rates of inflammatory bowel disease rise, discovery of the mechanisms related to the development of these conditions is important. Environmental exposure is hypothesized to play a role in etiology of the disease, as are alterations in the gut microbiome and the metabolites they produce. This study is the first to show that bisphenol-A alone alters tryptophan and microbiota metabolites derived from aromatic amino acids in a manner consistent with autoimmune diseases, specifically inflammatory bowel diseases, regardless of dextran sulfate sodium treatment. These findings indicate a potential mechanism by which bisphenol-A negatively affects gut physiology to exacerbate inflammation.
Collapse
Affiliation(s)
- Jennifer AA DeLuca
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Kimberly F Allred
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Rani Menon
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rebekah Riordan
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brad R Weeks
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Clinton D Allred
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Blossom SJ, Gilbert KM. Epigenetic underpinnings of developmental immunotoxicity and autoimmune disease. CURRENT OPINION IN TOXICOLOGY 2017; 10:23-30. [PMID: 30613805 DOI: 10.1016/j.cotox.2017.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The concordance rate for developing autoimmune disease in identical twins is around 50% demonstrating that gene and environmental interactions contribute to disease etiology. The environmental contribution to autoimmune disease is a wide-ranging concept including exposure to immunotoxic environmental chemicals. Because the immune system is immature during development suggests that adult-onset autoimmunity may originate when the immune system is particularly sensitive. Among the pollutants most closely associated with inflammation and/or autoimmunity include Bisphenol-A, mercury, TCDD, and trichloroethylene. These toxicants have been shown to impart epigenetic changes (e.g., DNA methylation) that may alter immune function and promote autoreactivity. Here we review these autoimmune-promoting toxicants and their relation to immune cell epigenetics both in terms of adult and developmental exposure.
Collapse
Affiliation(s)
- Sarah J Blossom
- University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Kathleen M Gilbert
- University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
13
|
Abbasi M, Nabavi SM, Fereshtehnejad SM, Jou NZ, Ansari I, Shayegannejad V, Mohammadianinejad SE, Farhoudi M, Noorian A, Razazian N, Abedini M, Faraji F. Multiple sclerosis and environmental risk factors: a case-control study in Iran. Neurol Sci 2017; 38:1941-1951. [PMID: 28799006 DOI: 10.1007/s10072-017-3080-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/21/2017] [Indexed: 01/25/2023]
Abstract
Studies have shown an increase in the incidence of MS in Iran. The aim of our study was to evaluate the relationship between environmental exposure and MS in Iran. This case-control study was conducted on 660 MS patients and 421 controls. Many environmental factors are compared between the two groups. Our findings demonstrated that prematurity ([OR = 4.99 (95% CI 1.34-18.68), P = 0.017]), history of measles and mumps ([OR = 1.60 (95% CI 1.05-2.45), P = 0.029; OR = 1.85 (95% CI 1.22-2.78), P = 0.003, respectively]), breast feeding [OR = 2.90 (95% CI 1.49-5.65), P = 0.002], head trauma in childhood ([OR = 8.21 (95% CI 1.56-43.06), P = 0.013]), vaccination in adulthood ([OR = 4.57 (95% CI 1.14-18.41), P = 0.032, respectively]), migraine ([OR = 3.50 (95% CI 1.61-7.59), P = 0.002]), family history of MS, IBD, migraine, and collagen vascular diseases ([OR = 2.73 (95% CI 1.56-4.78), P < 0.001], [OR = 3.14 (95% CI 1.460-6.78), P = 0.004; OR = 3.18 (95% CI 1.83-5.53), P < 0.001; OR = 1.81 (95% CI 1.03-3.20), P = 0.040, respectively]), stressful events ([OR = 32.57 (95% CI 17.21-61.64), P < 0.001]), and microwave exposure ([OR = 3.55 (95% CI 2.24-5.63), P ≤0.001]) were more in the MS group. Sun exposure ([OR = 0.09 (95% CI 0.02-0.38), P = 0.001]), dairy and calcium consumption ([OR = 0.44 (95% CI 0.27-0.71), P = 0.001]), diabetes mellitus ([OR = 0.11 (95% CI 0.01-00.99), P = 0.049], and complete vaccination during childhood appeared to decreased MS risk. Our results investigated many risk factors and protective factors in Iran.
Collapse
Affiliation(s)
- Maryam Abbasi
- Immunoregulation Research Center, Shahed University, Tehran, Iran.,Medical Students Research Committee, Shahed University, Tehran, Iran
| | - Seyed Massood Nabavi
- Neurology group, Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,MS research unit, Mostafa Khomeini Hospital, School of Medicine, Shahed University, Tehran, Iran.
| | - Seyed Mohammad Fereshtehnejad
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Nikan Zerafat Jou
- Medical Students Research Committee, Shahed University, Tehran, Iran
| | - Iman Ansari
- Medical Students Research Committee, Shahed University, Tehran, Iran
| | | | | | - Mahdi Farhoudi
- Neurology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Noorian
- Neurology Department, Azad Medical University of Mashhad, Mashhad, Iran
| | - Nazanin Razazian
- Neurology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoud Abedini
- Neurology Department, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fardin Faraji
- Neurology Department, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
14
|
Gestational bisphenol-A exposure lowers the threshold for autoimmunity in a model of multiple sclerosis. Proc Natl Acad Sci U S A 2017; 114:4999-5004. [PMID: 28439012 DOI: 10.1073/pnas.1620774114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental and hormonal factors are implicated in dysimmunity in multiple sclerosis. We investigated whether bisphenol-A, a prominent contaminant with endocrine-disrupting capabilities, altered susceptibility in an inflammatory model of multiple sclerosis. We found that gestational, but not adult, exposure to bisphenol-A increased the development of experimental autoimmune encephalomyelitis in adulthood in male, but not female, mice when a suboptimal disease-inducing immunization was used. Gestational bisphenol-A in male mice primed macrophages in adulthood and raised granulocyte-colony stimulating factor and neutrophil counts/activity postsuboptimal immunization. Neutralizing granulocyte-colony stimulating factor blocked susceptibility to disease in bisphenol-A mice. Early life exposure to bisphenol-A may represent an environmental consideration in multiple sclerosis.
Collapse
|
15
|
Xu J, Huang G, Guo TL. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases. TOXICS 2016; 4:toxics4040023. [PMID: 29051427 PMCID: PMC5606650 DOI: 10.3390/toxics4040023] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.
Collapse
Affiliation(s)
- Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602-7382, USA.
| | - Guannan Huang
- Department of Environmental Health Sciences, University of Georgia, Athens, GA 30602-7382, USA.
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602-7382, USA.
| |
Collapse
|
16
|
Kharrazian D, Vojdani A. Correlation between antibodies to bisphenol A, its target enzyme protein disulfide isomerase and antibodies to neuron-specific antigens. J Appl Toxicol 2016; 37:479-484. [PMID: 27610592 PMCID: PMC5324640 DOI: 10.1002/jat.3383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022]
Abstract
Evidence continues to increase linking autoimmunity and other complex diseases to the chemicals commonly found in our environment. Bisphenol A (BPA) is a synthetic monomer used widely in many forms, from food containers to toys, medical products and many others. The potential for BPA to participate as a triggering agent for autoimmune diseases is likely due to its known immunological influences. The goal of this research was to determine if immune reactivity to BPA has any correlation with neurological antibodies. BPA binds to a target enzyme called protein disulfide isomerase (PDI). Myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) are neuronal antigens that are target sites for neuroinflammation and neuroautoimmunity. We determined the co‐occurrence of anti‐MBP and anti‐MOG antibodies with antibodies made against BPA bound to human serum albumin in 100 healthy human subjects. Correlation between BPA to PDI, BPA to MOG, BPA to MBP, PDI to MBP and PDI to MOG were all highly statistically significant (P < 0.0001). The outcome of our study suggests that immune reactivity to BPA‐human serum albumin and PDI has a high degree of statistical significance with substantial correlation with both MBP and MOG antibody levels. This suggests that BPA may be a trigger for the production of antibodies against PDI, MBP and MOG. Immune reactivity to BPA bound to human tissue proteins may be a contributing factor to neurological autoimmune disorders. Further research is needed to determine the exact relationship of these antibodies with neuroautoimmunities. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. This study investigated correlation of bisphenol A bound to human albumin antibodies with protein disulfide isomerase antibodies, myelin oligodendrocyte glycoprotein antibodies and myelin basic protein antibodies.
Collapse
Affiliation(s)
- Datis Kharrazian
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Aristo Vojdani
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.,Immunosciences Lab., Inc., Los Angeles, CA, 90035, USA
| |
Collapse
|
17
|
Jochmanová I, Lazúrová Z, Rudnay M, Bačová I, Mareková M, Lazúrová I. Environmental estrogen bisphenol A and autoimmunity. Lupus 2015; 24:392-9. [PMID: 25801882 DOI: 10.1177/0961203314560205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past few years, there has been evidence of the increasing prevalence of autoimmune diseases. Autoimmune diseases consist of many complex disorders of unknown etiology resulting in immune responses to self-antigens. The immune system, and its function, is under complex and integrated control and its disruption can be triggered by multiple factors. Autoimmunity development is influenced by multiple factors and is thought to be a result of interactions between genetic and environmental factors. Here, we review the role of a specific environmental factor, bisphenol A (BPA), in the pathogenesis of autoimmune diseases. BPA belongs to the group of environmental estrogens that have been identified as risk factors involved in the development of autoimmune diseases.
Collapse
Affiliation(s)
- I Jochmanová
- 1st Department of Internal Medicine, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Z Lazúrová
- 1st Department of Internal Medicine, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - M Rudnay
- 1st Department of Internal Medicine, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - I Bačová
- Department of Medical Physiology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - M Mareková
- Department of Medical and Clinical Biochemistry and LABMED, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - I Lazúrová
- 1st Department of Internal Medicine, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| |
Collapse
|
18
|
Khan D, Ahmed SA. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation. Front Endocrinol (Lausanne) 2015; 6:91. [PMID: 26097467 PMCID: PMC4456948 DOI: 10.3389/fendo.2015.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023] Open
Abstract
Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation, and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight the BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Present address: Deena Khan, Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- *Correspondence: S. Ansar Ahmed, Department of Biomedical Sciences and Pathobiology, VMCVM, Virginia Tech, Phase II, Duck Pond Drive, Blacksburg, VA 24060, USA,
| |
Collapse
|
19
|
Abstract
Hormonal imprinting is an epigenetic process which is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. The hormonal imprinting influences the binding capacity of receptors, the hormone synthesis of the cells, and other hormonally regulated functions, as sexual behavior, aggressivity, empathy, etc. However, during the critical period, when the window for imprinting is open, molecules similar to the physiological imprinters as synthetic hormone analogs, other members of the hormone families, environmental pollutants, etc. can cause faulty imprinting with life-long consequences. The developing immune system, the cells of which also have receptors for hormones, is very sensitive to faulty imprinting, which causes alterations in the antibody and cytokine production, in the ratio of immune cells, in the defense against bacterial and viral infections as well as against malignant tumors. Immune cells (lymphocytes, monocytes, granulocytes and mast cells) are also producing hormones which are secreted into the blood circulation as well as are transported locally (packed transport). This process is also disturbed by faulty imprinting. As immune cells are differentiating during the whole life, faulty imprinting could develop any time, however, the most decisive is the perinatal imprinting. The faulty imprinting is inherited to the progenies in general and especially in the case of immune system. In our modern world the number and amount of artificial imprinters (e.g. endocrine disruptors and drugs) are enormously increasing. The effects of the faulty imprinters most dangerous to the immune system are shown in the paper. The present and future consequences of the flood of faulty imprintings are unpredictable however, it is discussed.
Collapse
Affiliation(s)
- György Csaba
- 1 Semmelweis University Department of Genetics, Cell and Immunobiology Budapest Hungary
| |
Collapse
|