1
|
Wang Z, Kennedy PG, Dupree C, Wang M, Lee C, Pointon T, Langford TD, Graner MW, Yu X. Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands. J Neuroimmune Pharmacol 2020; 16:567-580. [PMID: 32808238 PMCID: PMC7431217 DOI: 10.1007/s11481-020-09948-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is poorly understood. The most common laboratory abnormality associated with MS is increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands (OCBs) in the brain and cerebrospinal fluid (CSF). However, the major antigenic targets of these antibody responses are unknown. The risk of MS is increased after infectious mononucleosis (IM) due to EBV infection, and MS patients have higher serum titers of anti-EBV antibodies than control populations. Our goal was to identify disease-relevant epitopes of IgG antibodies in MS; to do so, we screened phage-displayed random peptide libraries (12-mer) with total IgG antibodies purified from the brain of a patient with acute MS. We identified and characterized the phage peptides for binding specificity to intrathecal IgG from patients with MS and from controls by ELISA, phage-mediated Immuno-PCR, and isoelectric focusing. We identified two phage peptides that share sequence homologies with EBV nuclear antigens 1 and 2 (EBNA1 and EBNA2), respectively. The specificity of the EBV epitopes found by panning with MS brain IgG was confirmed by ELISA and competitive inhibition assays. Using a highly sensitive phage-mediated immuno-PCR assay, we determined specific bindings of the two EBV epitopes to IgG from CSF from 46 MS and 5 inflammatory control (IC) patients. MS CSF IgG have significantly higher bindings to EBNA1 epitope than to EBNA2 epitope, whereas EBNA1 and EBNA2 did not significantly differ in binding to IC CSF IgG. Further, the EBNA1 epitope was recognized by OCBs from multiple MS CSF as shown in blotting assays with samples separated by isoelectric focusing. The EBNA1 epitope is reactive to MS intrathecal antibodies corresponding to oligoclonal bands. This reinforces the potential role of EBV in the etiology of MS. Antibodies purified from an MS brain plaque were panned by phage display peptide libraries to discern potential antigens. Phage displaying peptide sequences resembling Epstein-Barr Virus Nuclear Antigens 1 & 2 (EBNA1 & 2) epitopes were identified. Antibodies from sera and CSF from other MS patients also reacted to those epitopes. ![]()
Collapse
Affiliation(s)
- Zhe Wang
- National Engineering Research Center for Protein Drugs, Beijing, 102206, China
| | - Peter Ge Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Cecily Dupree
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Min Wang
- Immunoah Therapeutics, Inc., 12635 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Catherin Lee
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany Pointon
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T Dianne Langford
- Lewis Katz School of Medicine, Temple University, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disorder of unknown etiology, possibly caused by a virus or virus-triggered immunopathology. The virus might reactivate after years of latency and lyse oligodendrocytes, as in progressive multifocal leukoencephalopathy, or initiate immunopathological demyelination, as in animals infected with Theiler's murine encephalomyelitis virus or coronaviruses. The argument for a viral cause of MS is supported by epidemiological analyses and studies of MS in identical twins, indicating that disease is acquired. However, the most important evidence is the presence of bands of oligoclonal IgG (OCBs) in MS brain and CSF that persist throughout the lifetime of the patient. OCBs are found almost exclusively in infectious CNS disorders, and antigenic targets of OCBs represent the agent that causes disease. Here, the authors review past attempts to identify an infectious agent in MS brain cells and discuss the promise of using recombinant antibodies generated from clonally expanded plasma cells in brain and CSF to identify disease-relevant antigens. They show how this strategy has been used successfully to analyze antigen specificity in subacute sclerosing panencephalitis, a chronic encephalitis caused by measles virus, and in neuromyelitis optica, a chronic autoimmune demyelinating disease produced by antibodies directed against the aquaporin-4 water channel.
Collapse
Affiliation(s)
- Gregory P Owens
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
3
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disorder of unknown etiology, possibly caused by a virus or virus-triggered immunopathology. The virus might reactivate after years of latency and lyse oligodendrocytes, as in progressive multifocal leukoencephalopathy, or initiate immunopathological demyelination, as in animals infected with Theiler’s murine encephalomyelitis virus or coronaviruses. The argument for a viral cause of MS is supported by epidemiological analyses and studies of MS in identical twins, indicating that disease is acquired. However, the most important evidence is the presence of bands of oligoclonal IgG (OCBs) in MS brain and CSF that persist throughout the lifetime of the patient. OCBs are found almost exclusively in infectious CNS disorders, and antigenic targets of OCBs represent the agent that causes disease. Here, the authors review past attempts to identify an infectious agent in MS brain cells and discuss the promise of using recombinant antibodies generated from clonally expanded plasma cells in brain and CSF to identify disease-relevant antigens. They show how this strategy has been used successfully to analyze antigen specificity in subacute sclerosing panencephalitis, a chronic encephalitis caused by measles virus, and in neuromyelitis optica, a chronic autoimmune demyelinating disease produced by antibodies directed against the aquaporin-4 water channel.
Collapse
|
4
|
Owens GP, Shearer AJ, Yu X, Ritchie AM, Keays KM, Bennett JL, Gilden DH, Burgoon MP. Screening random peptide libraries with subacute sclerosing panencephalitis brain-derived recombinant antibodies identifies multiple epitopes in the C-terminal region of the measles virus nucleocapsid protein. J Virol 2007; 80:12121-30. [PMID: 17130301 PMCID: PMC1676253 DOI: 10.1128/jvi.01704-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infectious and inflammatory diseases of the CNS are often characterized by a robust B-cell response that manifests as increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands. We previously used laser capture microdissection and single-cell PCR to analyze the IgG variable regions of plasma cells from the brain of a patient with subacute sclerosing panencephalitis (SSPE). Five of eight human IgG1 recombinant antibodies (rAbs) derived from SSPE brain plasma cell clones recognized the measles virus (MV) nucleocapsid protein, confirming that the antibody response in SSPE targets primarily the agent causing disease. In this study, as part of our work on antigen identification, we used four rAbs to probe a random phage-displayed peptide library to determine if epitopes within the MV nucleocapsid protein could be identified with SSPE brain rAbs. All four of the SSPE rAbs enriched phage-displayed peptide sequences that reacted specifically to their panning rAb by enzyme-linked immunosorbent assay. BLASTP searches of the NCBI protein database revealed clear homologies in three peptides and different amino acid stretches within the 65 C-terminal amino acids of the MV nucleocapsid protein. The specificities of SSPE rAbs to these regions of the MV nucleocapsid protein were confirmed by binding to synthetic peptides or to short cDNA expression products. These results indicate the feasibility of using peptide screening for antigen discovery in central nervous system inflammatory diseases of unknown etiology, such as multiple sclerosis, neurosarcoidosis, or Behcet's syndrome.
Collapse
Affiliation(s)
- Gregory P Owens
- Department of Neurology, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Mail Stop B182, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yu X, Owens GP, Gilden DH. Rapid and efficient identification of epitopes/mimotopes from random peptide libraries. J Immunol Methods 2006; 316:67-74. [PMID: 17010370 DOI: 10.1016/j.jim.2006.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/01/2006] [Accepted: 08/14/2006] [Indexed: 11/18/2022]
Abstract
Phage-displayed random peptide libraries are important tools in identifying novel epitopes/mimotopes that may lead to the determination of antigen specificity. In this approach, high-affinity phage peptides are enriched by affinity selection (panning) on a monoclonal antibody. To facilitate identification of all potential phage peptides specific for recombinant monoclonal antibodies (rAbs) previously generated from clonally expanded plasma cells from the cerebrospinal fluid of patients with multiple sclerosis (MS), we developed a high-throughput method to determine phage specificity. In contrast to the 8-9 days needed in the standard large-scale method of amplifying phage clones for ELISA, the high-throughput method takes only 1 day. ELISA using phage clones amplified directly in 96-well plates avoids large-scale phage purification and enables rapid identification of specific epitopes/mimotopes. This technique will expedite identification of MS-specific peptides that can be used to discover the corresponding protein antigens.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Neurology, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Mail Stop B182, Denver, CO 80262, USA
| | | | | |
Collapse
|
6
|
Rowley MJ, O'Connor K, Wijeyewickrema L. Phage display for epitope determination: a paradigm for identifying receptor-ligand interactions. BIOTECHNOLOGY ANNUAL REVIEW 2004; 10:151-88. [PMID: 15504706 DOI: 10.1016/s1387-2656(04)10006-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antibodies that react with many different molecular species of protein and non-protein nature are widely studied in biology and have particular utilities, but the precise epitopes recognized are seldom well defined. The definition of epitopes by X-ray crystallography of the antigen-antibody complex, the gold standard procedure, has shown that most antibody epitopes are conformational and specified by interactions with topographic determinants on the surface of the antigenic molecule. Techniques available for the definition of such epitopes are limited. Phage display using either gene-specific libraries, or random peptide libraries, provides a powerful technique for an approach to epitope identification. The technique can identify amino acids on protein antigens that are critical for antibody binding and, further, the isolation of peptide motifs that are both structural and functional mimotopes of both protein and non-protein antigens. This review discusses techniques used to isolate such mimotopes, to confirm their specificity, and to characterize peptide epitopes. Moreover there are direct practical applications to deriving epitopes or mimotopes by sequence, notably the development of new diagnostic reagents, or therapeutic agonist or antagonist molecules. The techniques developed for mapping of antibody epitopes are applicable to probing the origins of autoimmune diseases and certain cancers by identifying "immunofootprints" of unknown initiating agents, as we discuss herein, and are directly applicable to examination of a wider range of receptor-ligand interactions.
Collapse
Affiliation(s)
- Merrill J Rowley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
7
|
Dybwad A, Lambin P, Sioud M, Zouali M. Probing the specificity of human myeloma proteins with a random peptide phage library. Scand J Immunol 2003; 57:583-90. [PMID: 12791097 DOI: 10.1046/j.1365-3083.2003.01254.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human myeloma proteins (HMPs) from 10 patients with multiple myeloma (MM) were used to affinity-select peptides from a random phage-display peptide library. Binding peptides were identified for the 10 analysed antibodies (eight, immunoglobulin G (IgG), and two, immunoglobulin A (IgA)). The specificity of the binding was confirmed by competitive experiments using phages and chemically synthesized peptides. Interestingly, some phage-displayed peptides were immuno-selected with HMPs isolated from different patients. Sequence alignments and homology searches revealed a significant homology with human proteins (e.g. neural cell adhesion proteins) and pathogen-derived proteins (e.g. herpes simplex virus capsid proteins). The selected peptides could be useful as targeting agents for myeloma cells expressing surface immunoglobulins.
Collapse
Affiliation(s)
- A Dybwad
- Department of Immunology, Molecular Medicine Group, The Norwegian Radium Hospital, Montebello, Norway
| | | | | | | |
Collapse
|
8
|
Abstract
The characterization of autoantibody specificities in rheumatic diseases is important in both diagnostic and basic research areas. Identification of the epitopes recognized by autoantibodies and their clinical and biological significance is not a trivial task. Epitopes may range in complexity from simple linear sequences of amino acids to complex quaternary structures. In addition to this structural complexity the frequency with which an autoantigen and its epitopes are recognized in a patient population may be useful in diagnosis, defining disease subgroups, and may offer information on disease prognosis. In this review recent advances in the epitope mapping of autoantigens in connective tissue diseases are discussed, with particular emphasis placed on the methodologies used to identify epitopes and the classification of the structural features of epitopes. To illustrate the identification of epitope structure, clinically relevant autoantigens, including CENP-A, PM/Scl-100, fibrillarin, filaggrin, Ro-52, and dsDNA, are discussed as examples of each type of epitope.
Collapse
|