1
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
2
|
Kuramoto H, Nakanishi T, Takegawa D, Mieda K, Hosaka K. Caffeic Acid Phenethyl Ester Induces Vascular Endothelial Growth Factor Production and Inhibits CXCL10 Production in Human Dental Pulp Cells. Curr Issues Mol Biol 2022; 44:5691-5699. [PMID: 36421669 PMCID: PMC9689326 DOI: 10.3390/cimb44110385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 07/29/2023] Open
Abstract
The survival rate of root non-vital teeth is lower than that of vital teeth. Therefore, to preserve the dental pulp is very important. The vascular endothelial growth factor (VEGF) is the most potent angiogenic factor involved in the vitality of dental pulp including reparative dentin formation. Caffeic acid phenethyl ester (CAPE) is a physiologically active substance of propolis and has some bioactivities such as anti-inflammatory effects. However, there are no reports on the effects of CAPE on dental pulp inflammation. In this study, we investigated the effects of CAPE on VEGF and inflammatory cytokine production in human dental pulp cells (HDPCs) to apply CAPE to an ideal dental pulp protective agent. We found that CAPE induced VEGF production from HDPCs. Moreover, CAPE induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK), and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) in HDPCs. Furthermore, CAPE inhibited C-X-C motif chemokine ligand 10 (CXCL10) production in Pam3CSK4- and tumor necrosis factor-alpha (TNF-α)-stimulated HDPCs. In conclusion, these results suggest that CAPE might be useful as a novel biological material for vital pulp therapy by exerting the effects of VEGF production and anti-inflammatory activities.
Collapse
|
3
|
Cheng CC, Chi PL, Shen MC, Shu CW, Wann SR, Liu CP, Tseng CJ, Huang WC. Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1α In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20061468. [PMID: 30909527 PMCID: PMC6470604 DOI: 10.3390/ijms20061468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial proliferation and remodeling, resulting in a specific increase in right ventricle systolic pressure (RVSP) and, ultimately right ventricular failure. Recent studies have demonstrated that caffeic acid phenethyl ester (CAPE) exerts a protective role in NF-κB-mediated inflammatory diseases. However, the effect of CAPE on PAH remains to be elucidated. In this study, monocrotaline (MCT) was used to establish PAH in rats. Two weeks after the induction of PAH by MCT, CAPE was administrated by intraperitoneal injection once a day for two weeks. Pulmonary hemodynamic measurements and pulmonary artery morphological assessments were examined. Our results showed that administration of CAPE significantly suppressed MCT-induced vascular remodeling by decreasing the HIF-1α expression and PDGF-BB production, and improved in vivo RV systolic performance in rats. Furthermore, CAPE inhibits hypoxia- and PDGF-BB-induced HIF-1α expression by decreasing the activation of the AKT/ERK pathway, which results in the inhibition of human pulmonary artery smooth muscle cells (hPASMCs) proliferation and prevention of cells resistant to apoptosis. Overall, our data suggest that HIF-1α is regarded as an alternative target for CAPE in addition to NF-κB, and may represent a promising therapeutic agent for the treatment of PAH diseases.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Caffeic Acids/pharmacology
- Cell Line
- Cell Proliferation/drug effects
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression
- Hemodynamics/drug effects
- Humans
- Hypertension, Pulmonary/diagnosis
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunohistochemistry
- Phenylethyl Alcohol/analogs & derivatives
- Phenylethyl Alcohol/pharmacology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Physical Therapy, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Graduate Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Shue-Ren Wann
- Graduate Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Kaohsiung Veterans General Hospital, Pingtung Branch, Pintung 91245, Taiwan.
| | - Chun-Peng Liu
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Physical Therapy, Fooyin University, Kaohsiung 83102, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Romana-Souza B, Dos Santos JS, Monte-Alto-Costa A. Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-κB, NOS2 and NRF2 expression. Life Sci 2018; 207:158-165. [PMID: 29864436 DOI: 10.1016/j.lfs.2018.05.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/12/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
Abstract
AIMS In pressure ulcers, the synthesis of reactive oxygen species induced by ischemia and reperfusion leads to chronic inflammation and tissue damage, which impair the closure of these lesions. Caffeic acid phenethyl ester (CAPE), found in propolis, promotes cutaneous wound healing of acute lesions and severe burns. However, the effects of CAPE on wound healing of pressure ulcers have not been investigated. This study investigated the effects of CAPE administration in a murine model of pressure ulcers. MAIN METHODS To induce pressure ulcers, two cycles of ischemia and reperfusion by external application of two magnetic plates were performed in the skin dorsum of mice. After the last cycle, animals were treated daily with CAPE or vehicle until they were euthanized. KEY FINDINGS The nitric oxide synthesis, lipid peroxidation, macrophage migration, protein nuclear factor kappa B and nitric-oxide synthase-2 expression were increased 3 days after ulceration but decreased 7 days later, in pressure ulcers of the CAPE group compared to that of the control group. CAPE reduced the protein expression of nuclear factor-erythroid2-related factor 2 in pressure ulcers 3 days after ulceration, but increased 7 days later. Myofibroblast density was increased in the CAPE group 7 days after ulceration, but reduced 12 days later when compared to control group. In addition, CAPE promoted collagen deposition, re-epithelialization and wound closure of mice pressure ulcers 12 days after ulceration. SIGNIFICANCE CAPE brings forward inflammatory response and oxidative damage involved in injury by ischemia and reperfusion, promoting dermal reconstruction and closure of pressure ulcers.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Jeanine Salles Dos Santos
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Monte-Alto-Costa
- Laboratory of Tissue Repair, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Subramanian K, Yedage SL, Bhanage BM. Electrodimerization of N
-Alkoxyamides for Zinc(II) Catalyzed Phenolic Ester Synthesis under Mild Reaction Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kripa Subramanian
- Department of Chemistry; Institute of Chemical Technology; Mumbai- 400 019 India
| | - Subhash L. Yedage
- Department of Chemistry; Institute of Chemical Technology; Mumbai- 400 019 India
| | | |
Collapse
|
6
|
Li L, Sun W, Wu T, Lu R, Shi B. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-κB and PI3K/Akt signaling pathway. Eur J Pharmacol 2016; 794:61-68. [PMID: 27832944 DOI: 10.1016/j.ejphar.2016.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Periodontal diseases often begin with chronic gingival inflammation, which causes the destruction of periodontal tissues. Inflammatory immune responses from host cells to bacteria, such as Porphyromonas gingivalis (P. gingivalis), cause periodontal degradation. Human gingival fibroblasts (HGFs) are the major cells in periodontal soft tissues. When stimulated by lipopolysaccharide (LPS), HGFs could secrete several pro-inflammatory cytokines and chemokines, such as interleukins (ILs) IL-6, IL-8, inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2). Caffeic acid phenethyl ester (CAPE) is the main active component of propolis, which is collected by honeybees from different plants and known for its anti-inflammatory effects. The anti-inflammatory effects of CAPE on the LPS-induced HGFs were demonstrated in this study. HGFs were pretreated with CAPE (10, 20, and 30µm) for 1h, followed by LPS stimulation (1μg/ml) for 24h. Enzyme-linked immunosorbent assay, Western blot analysis, and immunofluorescence staining were used to evaluate the production of IL-6, IL-8, iNOS, and COX-2, as well as the activation of TLR4-mediated NF-κB, PI3K/AKT, and MAPK signaling pathways. The results indicated that CAPE inhibits LPS-induced IL-6, IL-8, iNOS, and COX-2 production in a dose-dependent manner. Moreover, CAPE suppresses LPS-induced TLR4/MyD88 and nuclear factor kappa B (NF-κB) activation. In addition, phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) phosphorylation was inhibited by CAPE. These results demonstrated that CAPE could be effective for treating of periodontal diseases.
Collapse
Affiliation(s)
- Lei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Wei Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Tao Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Rui Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
7
|
Erenler R, Telci I, Ulutas M, Demirtas I, Gul F, Elmastas M, Kayir O. Chemical Constituents, Quantitative Analysis and Antioxidant Activities of E
chinacea purpurea
(L.) Moench and E
chinacea pallida
(Nutt.) Nutt. J Food Biochem 2015. [DOI: 10.1111/jfbc.12168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramazan Erenler
- Department of Chemistry; Faculty of Art and Science; Gaziosmanpasa University; Tokat 60240 Turkey
| | - Isa Telci
- Department of Field Crops; Faculty of Agriculture; Suleyman Demirel University; Isparta Turkey
| | - Musa Ulutas
- Department of Field Crops; Faculty of Agriculture; Gaziosmanpasa University; Tokat 60240 Turkey
| | - Ibrahim Demirtas
- Department of Chemistry; Faculty of Science; Cankiri Karatekin University; Cankiri Turkey
| | - Fatih Gul
- Department of Chemistry; Faculty of Science; Cankiri Karatekin University; Cankiri Turkey
| | - Mahfuz Elmastas
- Department of Chemistry; Faculty of Art and Science; Gaziosmanpasa University; Tokat 60240 Turkey
| | - Omer Kayir
- Department of Chemistry; Faculty of Art and Science; Gaziosmanpasa University; Tokat 60240 Turkey
| |
Collapse
|
8
|
Zhang P, Tang Y, Li NG, Zhu Y, Duan JA. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 2014; 19:16458-76. [PMID: 25314606 PMCID: PMC6271019 DOI: 10.3390/molecules191016458] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 01/10/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE), as one of the main active ingredients of the natural product propolis, shows the unique biological activities such as anti-tumor, anti-oxidation, anti-inflammatory, immune regulation, and so on. These have attracted the attention of many researchers to explore the compound with potent biological activities. This review aims to summarize its bioactivities, synthetic methods and derivatives, which will be helpful for further study and development of CAPE and its derivatives.
Collapse
Affiliation(s)
- Pengxuan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nian-Guang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|