1
|
Diniz AMB, Gualberto IJN, Lima LA, Cirino MLDA, Murakami RK, Ishikiriama BLC, Ruano R, da Silva LFF, Tirapelli D, Sbragia L. miRNA-143 expression is associated with inflammation and time of exposure to amniotic fluid in experimental gastroschisis. Clinics (Sao Paulo) 2023; 78:100311. [PMID: 38008037 PMCID: PMC10757286 DOI: 10.1016/j.clinsp.2023.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE Gastroschisis (GS) is a congenital anomaly in the abdominal wall with the intestinal loops exiting laterally to the umbilicus. The contact of the loops with Amniotic Fluid (AF) causes an inflammatory process in the exposed part, leading to an extended hospital stay and an increased risk of morbidity due to alterations related to intestinal motility. The authors aimed to evaluate the time of exposure to the AF in the experimental GS and to search for potential biomarkers of intestinal inflammation by measuring microRNAs. METHODS Rat fetuses were divided into three groups: a) CONTROL, b) GS reared on day 18 (GS = 18), and c) GS reared on day 19.5 (GS = 19) (term = 22 days). On day 21.5, the fetuses were removed for biometric parameters and biochemical analyses: 1) Biometrics: Body and Intestinal Weight (BW, IW), and intestinal-body weight ratio (IW/BW); 2) Descriptive histopathology and 3) miR-143 quantification by real-time Polymerase Chain Reaction (PCR). RESULTS BW was higher in CONTROL than GS 18 and G19 (p < 0.05). IW, IW/BW, intestinal water, and mRNA-143 were higher in GS 18 and GS 19 than in CONTROL, and GS 18 was higher than GS 19 (p < 0.05). The average of the inflammation score from the intestinal wall with mucosal inflammation and intra-epithelial lymphocytes shows worst in GS 18 and GS 19 vs. CONTROL (p < 0.05). CONCLUSIONS The tissue expression of mRNA-143 and the morphological changes in the intestine of GS worsened according to the time of exposure to AF, which could be a possible marker of fetal intestinal damage.
Collapse
Affiliation(s)
- Ana Maria Bicudo Diniz
- Division of Pediatric Surgery and Anatomy, Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Igor José Nogueira Gualberto
- Faculdade de Medicina de Bauru, Department of Pediatric Dentistry, Orthodontics and Public Health, Faculdade de Odontologia de Bauru, Universidade de São Paulo (USP), Bauru, SP, Brazil
| | - Luiza Almeida Lima
- Division of Maternal Fetal Medicine, Jackson Fetal Care, Department Obstetrics, Gynecology and Reproductive Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mucio Luiz de Assis Cirino
- Division of Pediatric Surgery and Anatomy, Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Rodrigo Kendi Murakami
- Faculdade de Medicina de Bauru, Department of Pediatric Dentistry, Orthodontics and Public Health, Faculdade de Odontologia de Bauru, Universidade de São Paulo (USP), Bauru, SP, Brazil
| | - Bella Luna Colombini Ishikiriama
- Faculdade de Medicina de Bauru, Department of Pediatric Dentistry, Orthodontics and Public Health, Faculdade de Odontologia de Bauru, Universidade de São Paulo (USP), Bauru, SP, Brazil
| | - Rodrigo Ruano
- Division of Maternal Fetal Medicine, Jackson Fetal Care, Department Obstetrics, Gynecology and Reproductive Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Luiz Fernando Ferraz da Silva
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo Death Verification Service (SVO), São Paulo, SP, Brazil
| | - Daniela Tirapelli
- Division of Pediatric Surgery and Anatomy, Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Lourenço Sbragia
- Division of Pediatric Surgery and Anatomy, Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirao Preto, SP, Brazil.
| |
Collapse
|
2
|
Ganguly R, Singh SV, Jaiswal K, Kumar R, Pandey AK. Modulatory effect of caffeic acid in alleviating diabetes and associated complications. World J Diabetes 2023; 14:62-75. [PMID: 36926656 PMCID: PMC10011896 DOI: 10.4239/wjd.v14.i2.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 02/14/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most common metabolic disorders characterized by elevated blood glucose levels. Prolonged uncontrolled hyperglycemia often leads to multi-organ damage including diabetic neuropathy, nephropathy, retinopathy, cardiovascular disorders, and diabetic foot ulcers. Excess production of free radicals causing oxidative stress in tissues is often considered to be the primary cause of onset and progression of DM and associated complications. Natural polyphenols can be used to induce or inhibit the expression of antioxidant enzymes such as glutathione peroxidase, heme oxygenase-1, superoxide dismutase, and catalase that are essential in maintaining redox balance, and ameliorate oxidative stress. Caffeic acid (CA) is a polyphenolderived from hydroxycinnamic acid and possesses numerous physiological properties includ-ing antioxidant, anti-inflammatory, anti-atherosclerotic, immune-stimulatory, cardioprotective, antiproliferative, and hepatoprotective activities. CA acts as a regulatory compound affecting numerous biochemical pathways and multiple targets. These include various transcription factors such as nuclear factor-B, tumor necrosis factor-α, interleukin-6, cyclooxygenase-2, and nuclear factor erythroid 2-related factor 2. Therefore, this review summarizes the pharmacological properties, molecular mechanisms, and pharmacokinetic profile of CA in mitigating the adverse effects of DM and associated complications. The bioavailability, drug delivery, and clinical trials of CA have also been discussed.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Shiv Vardan Singh
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Kritika Jaiswal
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| |
Collapse
|
3
|
Shahin NN, Shamma RN, Ahmed IS. A Nano-Liposomal Formulation of Caffeic Acid Phenethyl Ester Modulates Nrf2 and NF-κβ Signaling and Alleviates Experimentally Induced Acute Pancreatitis in a Rat Model. Antioxidants (Basel) 2022; 11:antiox11081536. [PMID: 36009255 PMCID: PMC9405210 DOI: 10.3390/antiox11081536] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023] Open
Abstract
The currently available management strategies for acute pancreatitis are inadequately effective which calls for exploration of new approaches to treat this condition. Caffeic acid phenethyl ester (CAPE) is a major bioactive constituent of honeybee propolis with promising therapeutic and preventive applications. However, its pharmaceutical potential and clinical use are hindered by its poor water solubility and limited plasma stability. In this study, we aimed to prepare, characterize and evaluate a CAPE-loaded nanoliposomal formulation to improve the efficacy of CAPE for the management of acute pancreatitis. The CAPE-loaded nanoliposomes (CAPE-loaded-NL) were prepared by a thin layer evaporation technique and were optimized using three edge activators. CAPE-loaded-NL were characterized for their vesicle size (VS), zeta potential (ZP), encapsulation efficiency (EE), polydispersity index (PDI), crystalline state and morphology. The protective effect of the optimal CAPE-loaded-NL was evaluated in a rat model of acute pancreatitis induced by administering a single intraperitoneal injection of L-ornithine. Oral pretreatment with CAPE-loaded-NL significantly counteracted ornithine-induced elevation in serum activities of pancreatic digestive enzymes and pancreatic levels of malondialdehyde, nuclear factor kappa B (NF-κB) p65, tumor necrosis factor-alpha, nitrite/nitrate, cleaved caspase-3 and myeloperoxidase activity. Moreover, pretreatment with CAPE-loaded-NL significantly reinstated the ornithine-lowered glutathione reductase activity, glutathione, nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 levels and ATP/ADP ratio, and potentiated the Bcl-2/Bax ratio in pancreatic tissue. CAPE-loaded-NL displayed superior antioxidant, anti-inflammatory and anti-apoptotic effects compared to free CAPE oral suspension and achieved a more potent correction of the derangements in serum amylase and pancreatic myeloperoxidase activities. The histological observations were in line with the biochemical findings. Our results suggest that CAPE-loaded-NL provide a promising interventional approach for acute pancreatitis mainly through the enhancement of the exerted antioxidant, anti-inflammatory and anti-apoptotic effects which may be mediated, at least in part, through modulation of Nrf2 and NF-κβ signaling.
Collapse
Affiliation(s)
- Nancy Nabil Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Iman Saad Ahmed
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Kamarauskaite J, Baniene R, Trumbeckas D, Strazdauskas A, Trumbeckaite S. Caffeic Acid Phenethyl Ester Protects Kidney Mitochondria against Ischemia/Reperfusion Induced Injury in an In Vivo Rat Model. Antioxidants (Basel) 2021; 10:747. [PMID: 34066715 PMCID: PMC8150279 DOI: 10.3390/antiox10050747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
To improve ischemia/reperfusion tolerance, a lot of attention has been focused on natural antioxidants. Caffeic acid phenethyl ester (CAPE), an active component of the resinous exudates of the buds and young leaves of Populus nigra L., Baccharis sarothroides A., etc., and of propolis, possesses unique biological activities such as anti-inflammatory, antioxidant, immunomodulating, and cardioprotective effects, among others. There is a lack of studies showing a link between the antioxidant potential of CAPE and the mechanism of protective action of CAPE at the level of mitochondria, which produces the main energy for the basic functions of the cell. In the kidney, ischemia/reperfusion injury contributes to rapid kidney dysfunction and high mortality rates, and the search for biologically active protective compounds remains very actual. Therefore, the aim of this study was to identify the antioxidant potential of CAPE and to investigate whether CAPE can protect rat kidney mitochondria from in vivo kidney ischemia/reperfusion induced injury. We found that CAPE (1) possesses antioxidant activity (the reducing properties of CAPE are more pronounced than its antiradical properties); CAPE effectively reduces cytochrome c; (2) protects glutamate/malate oxidation and Complex I activity; (3) preserves the mitochondrial outer membrane from damage and from the release of cytochrome c; (4) inhibits reactive oxygen species (ROS) generation in the Complex II (SDH) F site; (5) diminishes ischemia/reperfusion-induced LDH release and protects from necrotic cell death; and (6) has no protective effects on succinate oxidation and on Complex II +III activity, but partially protects Complex II (SDH) from ischemia/reperfusion-induced damage. In summary, our study shows that caffeic acid phenethyl ester protects kidney mitochondrial oxidative phosphorylation and decreases ROS generation at Complex II in an in vivo ischemia/reperfusion model, and shows potential as a therapeutic agent for the development of pharmaceutical preparations against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Justina Kamarauskaite
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Rasa Baniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (R.B.); (A.S.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania
| | - Darius Trumbeckas
- Department of Urology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Arvydas Strazdauskas
- Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (R.B.); (A.S.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Neuroscience Institute, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania; (R.B.); (A.S.)
| |
Collapse
|
5
|
Effect of rutin on experimentally induced small intestinal ischemia reperfusion injury in rats: A biochemical and histopathological evaluation. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.858237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Silva H, Lopes NMF. Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Front Physiol 2020; 11:595516. [PMID: 33343392 PMCID: PMC7739266 DOI: 10.3389/fphys.2020.595516] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeic acid (CA) and its phenethyl ester (CAPE) are naturally occurring hydroxycinnamic acids with an interesting array of biological activities; e.g., antioxidant, anti-inflammatory, antimicrobial and cytostatic. More recently, several synthetic analogs have also shown similar properties, and some with the advantage of added stability. The actions of these compounds on the cardiovascular system have not been thoroughly explored despite presenting an interesting potential. Indeed the mechanisms underlying the vascular effects of these compounds particularly need clarifying. The aim of this paper is to provide a comprehensive and up-to-date review on current knowledge about CA and its derivatives in the cardiovascular system. Caffeic acid, CAPE and the synthetic caffeic acid phenethyl amide (CAPA) exhibit vasorelaxant activity by acting on the endothelial and vascular smooth muscle cells. Vasorelaxant mechanisms include the increased endothelial NO secretion, modulation of calcium and potassium channels, and modulation of adrenergic receptors. Together with a negative chronotropic effect, vasorelaxant activity contributes to lower blood pressure, as several preclinical studies show. Their antioxidant, anti-inflammatory and anti-angiogenic properties contribute to an important anti-atherosclerotic effect, and protect tissues against ischemia/reperfusion injuries and the cellular dysfunction caused by different physico-chemical agents. There is an obvious shortage of in vivo studies to further explore these compounds' potential in vascular physiology. Nevertheless, their favorable pharmacokinetic profile and overall lack of toxicity make these compounds suitable for clinical studies.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS – Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Miguel F. Lopes
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Leonard W, Zhang P, Ying D, Fang Z. Hydroxycinnamic acids on gut microbiota and health. Compr Rev Food Sci Food Saf 2020; 20:710-737. [DOI: 10.1111/1541-4337.12663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- William Leonard
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Pangzhen Zhang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Danyang Ying
- CSIRO Agriculture & Food Werribee Victoria Australia
| | - Zhongxiang Fang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
8
|
Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel-Naim AB, Abdel-Rahman SZ. Caffeic Acid Phenethyl Ester: A Review of Its Antioxidant Activity, Protective Effects against Ischemia-reperfusion Injury and Drug Adverse Reactions. Crit Rev Food Sci Nutr 2017; 56:2183-90. [PMID: 25365228 DOI: 10.1080/10408398.2013.821967] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions.
Collapse
Affiliation(s)
- Mai F Tolba
- a Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University , Cairo , Egypt.,b Department of Obstetrics and Gynecology , The University of Texas Medical Branch , Galveston , Texas , USA
| | - Hany A Omar
- c Faculty of Pharmacy, Department of Pharmacology, Beni-Suef University , Egypt
| | - Samar S Azab
- a Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University , Cairo , Egypt
| | - Amani E Khalifa
- a Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University , Cairo , Egypt
| | - Ashraf B Abdel-Naim
- a Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University , Cairo , Egypt
| | - Sherif Z Abdel-Rahman
- b Department of Obstetrics and Gynecology , The University of Texas Medical Branch , Galveston , Texas , USA
| |
Collapse
|
9
|
Wang Y, Song J, Liu Y, Li Y, Liu Z. Mild Hypothermia Protects Pigs' Gastric Mucosa After Cardiopulmonary Resuscitation via Inhibiting Interleukin 6 (IL-6) Production. Med Sci Monit 2016; 22:3523-3528. [PMID: 27694796 PMCID: PMC5063424 DOI: 10.12659/msm.899688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The purpose of this study was to determine the effect of mild hypothermia therapy on gastric mucosa after cardiopulmonary resuscitation (CPR) and the underlying mechanism. Material/Methods Ventricular fibrillation was induced in pigs. After CPR, the surviving pigs were divided into mild hypothermia-treated and control groups. The changes in vital signs and hemodynamic parameters were monitored before cardiac arrest and at intervals of 0.5, 1, 2, 4, 6, 12, and 24 h after restoration of spontaneous circulation. Serum IL-6 was determined at the same time, and gastroscopy was performed. The pathologic changes were noted, and the expression of IL-6 was determined by hematoxylin and eosin (HE) staining and immunohistochemistry under light. Results The heart rate, mean arterial blood pressure, and cardiac output in both groups did not differ significantly. The gastric mucosa ulcer index evaluated by gastroscopy 2 h and 24 h after restoration of spontaneous circulation (ROSC) in the mild hypothermic group was lower than that the control group (P<0.05). The inflammatory pathologic score of gastric mucosa in the mild hypothermic group 6–24 h after ROSC was lower than that in the control group (P<0.05). Serum and gastric mucosa IL-6 expression 0.5–4 h and 6, 12, and 24 h after ROSC was lower in the mild hypothermic group than in the control group (P<0.05). Conclusions Mild hypothermia treatment protects gastric mucosa after ROSC via inhibiting IL-6 production and relieving the inflammatory reaction.
Collapse
Affiliation(s)
- Yan Wang
- Department of Digestion, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Jian Song
- Department of Gastroenterology and Hepatology, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Yuhong Liu
- Department of Digestion, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Yaqiang Li
- Department of Digestion, Beijing Lu He Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| | - Zhengxin Liu
- Department of Digestion, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
10
|
CAPE promotes the expansion of human umbilical cord blood-derived hematopoietic stem and progenitor cells in vitro. SCIENCE CHINA-LIFE SCIENCES 2014; 57:188-94. [PMID: 24448906 DOI: 10.1007/s11427-014-4611-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/12/2013] [Indexed: 10/25/2022]
Abstract
Due to the low number of collectable stem cells from single umbilical cord blood (UCB) unit, their initial uses were limited to pediatric therapies. Clinical applications of UCB hematopoietic stem and progenitor cells (HSPCs) would become feasible if there were a culture method that can effectively expand HSPCs while maintaining their self-renewal capacity. In recent years, numerous attempts have been made to expand human UCB HSPCs in vitro. In this study, we report that caffeic acid phenethyl ester (CAPE), a small molecule from honeybee extract, can promote in vitro expansion of HSPCs. Treatment with CAPE increased the percentage of HSPCs in cultured mononuclear cells. Importantly, culture of CD34(+) HSPCs with CAPE resulted in a significant increase in total colony-forming units and high proliferative potential colony-forming units. Burst-forming unit-erythroid was the mostly affected colony type, which increased more than 3.7-fold in 1 μg mL(-1) CAPE treatment group when compared to the controls. CAPE appears to induce HSPC expansion by upregulating the expression of SCF and HIF1-α. Our data suggest that CAPE may become a potent medium supplement for in vitro HSPC expansion.
Collapse
|
11
|
Czeiger D, Osyntsov A, Osyntsov L, Ball CG, Gigi R, Shaked G. Examining the safety of colon anastomosis on a rat model of ischemia-reperfusion injury. World J Emerg Surg 2013; 8:24. [PMID: 23819877 PMCID: PMC3703257 DOI: 10.1186/1749-7922-8-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/27/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Intestinal ischemia and reperfusion can impair anastomotic strength. The purpose of this study was to evaluate the safety of delayed colon anastomosis following remote ischemia-reperfusion (IR) injury. Methods Rats divided into two groups underwent bilateral groin incisions, however only the study group had femoral artery clamping to inflict IR injury. Twenty-four hours following this insult, the animals underwent laparotomy, incision of the transverse colon and reanastomosis. End points included anastomotic leakage, strength and histopathological features. Results Anastomotic leak among IR animals (22.2%) was not statistically different in comparison to the controls [10.5% (p = 0.40)]. Anastomotic mean burst pressures showed no statistically significant difference [150.6 ± 15.57 mmHg in the control group vs. 159.9 ± 9.88 mmHg in the IR group (p = 0.64)]. The acute inflammatory process in the IR group was similar to controls (p = 0.26), as was the chronic repair process (p = 0.88). There was no significant difference between the inflammation:repair ratios amongst the two groups (p = 0.67). Conclusion Primary colon repair is safe when performed 24 hours following systemic IR injury.
Collapse
Affiliation(s)
- David Czeiger
- Department of General Surgery and Trauma Unit, Soroka University Medical Center and Ben-Gurion University, Beer Sheva, Israel
| | - Anton Osyntsov
- Department of General Surgery, Soroka University Medical Center and Ben-Gurion University, Beer Sheva 84101, Israel
| | - Lidia Osyntsov
- Pathology Institute, Soroka University Medical Center and Ben- Gurion University, Beer Sheva, Israel
| | - Chad G Ball
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Roy Gigi
- Department of Orthopedics, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gad Shaked
- Department of General Surgery and Trauma Unit, Soroka University Medical Center and Ben-Gurion University, Beer Sheva, Israel ; Department of General Surgery, Soroka University Medical Center and Ben-Gurion University, Beer Sheva 84101, Israel
| |
Collapse
|