1
|
Menger MM, Manuschewski R, Ehnert S, Rollmann MF, Maisenbacher TC, Tobias AL, Menger MD, Laschke MW, Histing T. Radiographic, Biomechanical and Histological Characterization of Femoral Fracture Healing in Aged CD-1 Mice. Bioengineering (Basel) 2023; 10:bioengineering10020275. [PMID: 36829769 PMCID: PMC9952563 DOI: 10.3390/bioengineering10020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
With a gradually increasing elderly population, the treatment of geriatric patients represents a major challenge for trauma and reconstructive surgery. Although, it is well established that aging affects bone metabolism, it is still controversial if aging impairs bone healing. Accordingly, we investigated fracture healing in young adult (3-4 months) and aged (16-18 months) CD-1 mice using a stable closed femoral fracture model. Bone healing was analyzed by radiographic, biomechanical and histological analysis at 1, 2, 3, 4 and 5 weeks after fracture. Our results demonstrated an increased callus diameter to femoral diameter ratio in aged animals at later time points of fracture healing when compared to young adult mice. Moreover, our biomechanical analysis revealed a significantly decreased bending stiffness at 3 and 4 weeks after fracture in aged animals. In contrast, at 5 weeks after fracture, the analysis showed no significant difference in bending stiffness between the two study groups. Additional histological analysis showed a delayed endochondral ossification in aged animals as well as a higher amounts of fibrous tissue at early healing time points. These findings indicate a delayed process of callus remodeling in aged CD-1 mice, resulting in a delayed fracture healing when compared to young adult animals. However, the overall healing capacity of the fractured femora was not affected by aging.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-7071-606-1001; Fax: +49-7071-606-1002
| | - Ruben Manuschewski
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University of Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Mika F. Rollmann
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Anne L. Tobias
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Fracture Healing in Elderly Mice and the Effect of an Additional Severe Blood Loss: A Radiographic and Biomechanical Murine Study. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010070. [PMID: 36671642 PMCID: PMC9855159 DOI: 10.3390/bioengineering10010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Femoral fractures and severe bleeding frequently occur in old patients showing a delayed healing. As there are no studies investigating the combined effect of high age and severe blood loss on fracture healing, this was examined radiographically and biomechanically in this study. Therefore, young and old male mice were randomly assigned to three operation groups. In the fracture group (Fx), external fixator and osteotomy were applied to the femur. The combined trauma group (THFx) additionally received a pressure-controlled hemorrhage. Sham animals were only implanted with arterial catheter and external fixator. Sacrifice was performed after three weeks and bone healing was evaluated radiologically via µCT, as well as biomechanically using a three-point bending test. A decreased share of callus/total bone volume was observed in old mice with blood loss compared to old Fx. Hemorrhagic shock also reduced the trabecular number in old mice compared to Fx and young THFx. Moreover, a lower elastic limit in old Sham mice without fracture was revealed. Fracture combined with a high loss of blood further reduced the elastic limit in old mice compared to isolated Fx in old animals. In conclusion, this study showed that severe blood loss has a higher negative effect in old mice compared to young ones.
Collapse
|
3
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
4
|
Guo X, Zhang J, Han X, Wang G. LncRNA SNHG1 Delayed Fracture Healing via Modulating miR-181a-5p/PTEN Axis. J INVEST SURG 2022; 35:1304-1312. [PMID: 35263556 DOI: 10.1080/08941939.2022.2048926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiuquan Guo
- Department of Spinal Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| | - Jialiang Zhang
- Zhucheng Linjia Village Central Health Center, Weifang, Shandong, China
| | - Xuemei Han
- Zhucheng Longdu Health Center, Weifang, Shandong, China
| | - Ganggang Wang
- Department of Hand and Foot Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
5
|
The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep 2021; 15:101117. [PMID: 34458509 PMCID: PMC8379440 DOI: 10.1016/j.bonr.2021.101117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction Osteoporosis is characterised by low bone mass and micro-architectural deterioration of bone structure. Its treatment is directed at the processes of bone formation or resorption, that are of utmost importance in fracture healing. We provide a comprehensive review of the literature aiming to summarize and clarify the effects of osteoporosis and its treatment on fracture healing. Material and methods A literature search was conducted in PubMed and Embase (OVID version). In vivo animal and human studies on long bone fractures were included. A total of 93 articles were included for this review; 23 studies on the effect of osteoporosis (18 animal and 5 clinical studies) and 70 studies on the effect of osteoporosis treatment (41 animal, 26 clinical studies and 3 meta-analyses) on fracture healing. Results In animal fracture models osteoporosis was associated with decreased callus formation and bone growth, bone mineral density, biomechanical strength and delayed cellular and differentiation processes during fracture healing. Two large databases identified osteoporosis as a risk factor for non-union whereas three other studies did not. One of those three studies however found a prolonged healing time in patients with osteoporosis. Anti-osteoporosis medication showed inconsistent effects on fracture healing in both non-osteoporotic and osteoporotic animal models. Only the parathyroid hormone and anti-resorption medication were related to improved fracture healing and delayed remodelling respectively. Clinical studies performed in predominantly hip and distal radius fracture patients showed no effect of bisphosphonates on fracture healing. Parathyroid hormone reduced time to union in several clinical trials performed in mainly hip fracture patients, but this did not result in decreased delayed or non-union rates. Conclusion Evidence that substantiates the negative influence of osteoporosis on fracture healing is predominantly from animal studies and to a lesser extent from clinical studies, since convincing clinical evidence lacks. Bisphosphonates and parathyroid hormone may be used during fracture healing, since no clear negative effect has been shown. Parathyroid hormone might even decrease time to fracture union, without decreasing union rate. Osteoporosis negatively influences fracture healing in animal models. There is no convincing evidence for a similar effect in humans. In animals, bisphosphonates delay bone remodelling In animals, parathyroid hormone improves fracture healing In humans, anti-osteoporotic drugs do not interfere with fracture healing.
Collapse
|
6
|
Ryan G, Magony R, Gortler H, Godbout C, Schemitsch EH, Nauth A. Systemically impaired fracture healing in small animal research: A review of fracture repair models. J Orthop Res 2021; 39:1359-1367. [PMID: 33580554 DOI: 10.1002/jor.25003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process requiring mechanical stability, an osteoconductive matrix, and osteoinductive and osteogenic biology. This intricate process is easily disrupted by various patient factors such as chronic disease and lifestyle. As the medical complexity and age of patients with fractures continue to increase, the importance of developing relevant experimental models is becoming paramount in preclinical research. The objective of this review is to describe the most common small animal models of systemically impaired fracture healing used in the orthopedic literature including osteoporosis, diabetes mellitus, smoking, alcohol use, obesity, and ageing. This review will provide orthopedic researchers with a summary of current models of systemically impaired fracture healing used in small animals and present an overview of the methods of induction for each condition.
Collapse
Affiliation(s)
- Gareth Ryan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Richard Magony
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Hilary Gortler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Charles Godbout
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Emil H Schemitsch
- Department of Surgery, Division of Orthopaedic Surgery, University of Western Ontario, London, Ontario, Canada
| | - Aaron Nauth
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Division of Orthopaedic Surgery, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Stigler RG, Becker K, Hasanov E, Hörmann R, Gassner R, Lepperdinger G. Osteocyte numbers decrease only in postcranial but not in cranial bones in humans of advanced age. Ann Anat 2019; 226:57-63. [PMID: 31330307 DOI: 10.1016/j.aanat.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Bone ageing is governed by the linked activities of short-lived osteoblasts and osteoclasts in conjunction with long-lived osteocytes present in osseous structure. Besides their maintenance function, osteogenic cells also gain specific positional information, which may potentially trigger ageing-associated cellular deviations in terminally differentiated osteocytes differently in cranial versus postcranial tissues. METHODS We therefore investigated bone taken from deceased aged humans explanted at five distinct anatomical positions throughout the body and assessed physical and biological determinants applying radiologic and histologic measures. RESULTS We were able to show that significantly more osteocytes reside in aged cortical bone at cranial positions than within axial or limb skeleton. These cellular states and conditions were not found in the corresponding trabecular bone, where osteocyte numbers remain also high at postcranial positions. Parallel comparative analyses of bone microstructure as analyzed by means of computer tomography showed no significant differences. CONCLUSIONS Considering differences and commonalities regarding the bone samples, such as loading, mechanisms of ossification or the surrounding stromal cell compartment, our findings indicate that positional information laid down during ontogenetic processes is instructive during the entire life thus potentially also moulding spatial-specific mechanistic distinctions of bone ageing.
Collapse
Affiliation(s)
- Robert G Stigler
- Department of Oral and Maxillofacial Surgery, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Kathrin Becker
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Morrenstr. 5, 40225 Düsseldorf, Germany.
| | - Elvin Hasanov
- Department of Oral and Maxillofacial Surgery, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Romed Hörmann
- Division of Clinical and Functional Anatomy, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Robert Gassner
- Department of Oral and Maxillofacial Surgery, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Günter Lepperdinger
- Department of Biosciences, University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria
| |
Collapse
|
8
|
Haffner-Luntzer M, Liedert A, Ignatius A. Mechanobiology of bone remodeling and fracture healing in the aged organism. Innov Surg Sci 2016; 1:57-63. [PMID: 31579720 PMCID: PMC6753991 DOI: 10.1515/iss-2016-0021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Bone can adapt to changing load demands by mechanically regulated bone remodeling. Osteocytes, osteoblasts, and mesenchymal stem cells are mechanosensitive and respond to mechanical signals through the activation of specific molecular signaling pathways. The process of bone regeneration after fracture is similarly and highly regulated by the biomechanical environment at the fracture site. Depending on the tissue strains, mesenchymal cells differentiate into fibroblasts, chondrocytes, or osteoblasts, determining the course and the success of healing. In the aged organism, mechanotransduction in both intact and fractured bones may be altered due to changed hormone levels and expression of growth factors and other signaling molecules. It is proposed that altered mechanotransduction may contribute to disturbed healing in aged patients. This review explains the basic principles of mechanotransduction in the bone and the fracture callus and summarizes the current knowledge on aging-induced changes in mechanobiology. Furthermore, the methods for external biomechanical stimulation of intact and fractured bones are discussed with respect to a possible application in the elderly patient.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| |
Collapse
|
9
|
Haffner-Luntzer M, Kemmler J, Heidler V, Prystaz K, Schinke T, Amling M, Kovtun A, Rapp AE, Ignatius A, Liedert A. Inhibition of Midkine Augments Osteoporotic Fracture Healing. PLoS One 2016; 11:e0159278. [PMID: 27410432 PMCID: PMC4943649 DOI: 10.1371/journal.pone.0159278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
The heparin-binding growth and differentiation factor midkine (Mdk) is proposed to negatively regulate osteoblast activity and bone formation in the adult skeleton. As Mdk-deficient mice were protected from ovariectomy (OVX)-induced bone loss, this factor may also play a role in the pathogenesis of postmenopausal osteoporosis. We have previously demonstrated that Mdk negatively influences bone regeneration during fracture healing. Here, we investigated whether the inhibition of Mdk using an Mdk-antibody (Mdk-Ab) improves compromised bone healing in osteoporotic OVX-mice. Using a standardized femur osteotomy model, we demonstrated that Mdk serum levels were significantly enhanced after fracture in both non-OVX and OVX-mice, however, the increase was considerably greater in osteoporotic mice. Systemic treatment with the Mdk-Ab significantly improved bone healing in osteoporotic mice by increasing bone formation in the fracture callus. On the molecular level, we demonstrated that the OVX-induced reduction of the osteoanabolic beta-catenin signaling in the bony callus was abolished by Mdk-Ab treatment. Furthermore, the injection of the Mdk-Ab increased trabecular bone mass in the skeleton of the osteoporotic mice. These results implicate that antagonizing Mdk may be useful for the therapy of osteoporosis and osteoporotic fracture-healing complications.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Julia Kemmler
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Verena Heidler
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Katja Prystaz
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Kovtun
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anna E. Rapp
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
10
|
Histing T, Andonyan A, Klein M, Scheuer C, Stenger D, Holstein JH, Veith NT, Pohlemann T, Menger MD. Obesity does not affect the healing of femur fractures in mice. Injury 2016; 47:1435-44. [PMID: 27156834 DOI: 10.1016/j.injury.2016.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/02/2023]
Abstract
Obesity is reported to be both protective and deleterious to bone. Lipotoxicity and inflammation might be responsible for bone loss through inhibition of osteoblasts and activation of osteoclasts. However, little is known whether obesity affects the process of fracture healing. Therefore, we studied the effect of high fat diet-induced (HFD) obesity on callus formation and bone remodelling in a closed femur fracture model in mice. Thirty-one mice were fed a diet containing 60kJ% fat (HFD) for a total of 20 weeks before fracture and during the entire postoperative observation period. Control mice (n=31) received a standard diet containing 10kJ% fat. Healing was analyzed using micro-CT, biomechanical, histomorphometrical, immunohistochemical, serum and protein biochemical analysis at 2 and 4 weeks after fracture. HFD-fed mice showed a higher body weight and increased serum concentrations of leptin and interleukin-6 compared to controls. Within the callus tissue Western blot analyses revealed a higher expression of transcription factor peroxisome proliferator-activated receptor y (PPARy) and a reduced expression of runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein (BMP)-4. However, obesity did not affect the expression of BMP-2 and did not influence the receptor activator of nuclear factor κB (RANK)/RANK ligand/osteoprotegerin (OPG) pathway during fracture healing. Although the bones of HFD-fed animals showed an increased number of adipocytes within the bone marrow, HFD did not increase callus adiposity. In addition, radiological and histomorphometric analysis could also not detect significant differences in bone formation between HFD-fed animals and controls. Accordingly, HFD did not affect bending stiffness after 2 and 4 weeks of healing. These findings indicate that obesity does not affect femur fracture healing in mice.
Collapse
Affiliation(s)
- T Histing
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | - A Andonyan
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - M Klein
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - C Scheuer
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - D Stenger
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - J H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - N T Veith
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - T Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| |
Collapse
|
11
|
Haffner-Luntzer M, Kovtun A, Rapp AE, Ignatius A. Mouse Models in Bone Fracture Healing Research. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0037-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Abstract
Complex interactions among cells of the monocyte-macrophage-osteoclast lineage and the mesenchymal stem cell-osteoblast lineage play a major role in the pathophysiology of bone healing. Whereas the former lineage directs inflammatory events and bone resorption, the latter represents a source of cells for bone regeneration and immune modulation. Both of these lineages are affected by increasing age, which is associated with higher baseline levels of inflammatory mediators, and a significant reduction in osteogenic capabilities. Given the above, fracture healing, osteoporosis, and other related events in the elderly present numerous challenges, which potentially could be aided by new therapeutic approaches to modulate both inflammation and bone regeneration.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, Stanford University, R116, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires - UMR CNRS 7052, Faculté de Médecine - Université Paris7, 10 avenue de Verdun, 75010, Paris, France.,Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris5, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Laura Lu
- Department of Orthopaedic Surgery, Stanford University, R116, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, R116, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Histing T, Heerschop K, Klein M, Scheuer C, Stenger D, Herath SC, Pohlemann T, Menger MD. Effect of Stabilization on the Healing Process of Femur Fractures in Aged Mice. J INVEST SURG 2016; 29:202-8. [PMID: 26891453 DOI: 10.3109/08941939.2015.1127448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The influence of mechanical stability on fracture healing has previously been studied in adult mice, but is poorly understood in aged animals. Therefore, we herein studied the effect of stabilization on the healing process of femur fractures in aged mice. METHODS Twenty-four 18-month-old CD-1 mice were stabilized after midshaft fracture of the femur with an intramedullary screw. In another 24 18-month-old mice, the femur fractures were left unstabilized. Bone healing was studied by radiological, biomechanical, histomorphometric, and protein expression analyses. RESULTS After 2 and 5 weeks of healing, the callus of nonstabilized fractures compared to stabilized fractures was significantly larger, containing a significantly smaller amount of osseous tissue and a higher amount of cartilaginous tissue. This was associated with a significantly lower biomechanical stiffness during the early phase of healing. However, during the late phase of fracture healing both nonstabilized and stabilized fractures showed a biomechanical stiffness of ∼40%. Of interest, Western blot analyses of callus tissue demonstrated that the expression of proteins related to angiogenesis, bone formation and remodeling, i.e. VEGF, CYR61, BMP-2, BMP-4, Col-2, Col-10, RANKL, OPG, did not differ between nonstabilized and stabilized fractures. CONCLUSION Nonstabilized fractures in aged mice show delayed healing and remodeling. This is not caused by an altered protein expression in the callus but rather by the excessive interfragmentary movements.
Collapse
Affiliation(s)
- T Histing
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - K Heerschop
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - M Klein
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - C Scheuer
- b Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar, Germany
| | - D Stenger
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - S C Herath
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - T Pohlemann
- a Department of Trauma, Hand and Reconstructive Surgery , Saarland University , D-66421 Homburg/Saar, Germany
| | - M D Menger
- b Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar, Germany
| |
Collapse
|
14
|
Abstract
Osteoporosis is a global public health problem currently affecting more than 200 million people worldwide. Major research efforts are being made to improve the outcomes for patients with osteoporosis. However, the treatment of fractures associated with osteoporosis remains unsatisfactory. Animal models continue to be an important tool for establishing strategies to treat osteoporotic fractures, and various methods of inducing osteoporosis have been used. Investigators must select a model that best reflects the clinical problem being studied, and the underlying pathophysiology of the osteoporosis in the target patient group. In particular a model for Type I post-menopausal osteoporosis should mimic a fall in oestrogen and rise in osteoclast activity observed with this condition, whereas a model for type II 'senile' osteoporosis should mimic the fall in osteoblast activity. Unfortunately, there is no single all-encompassing model that precisely imitates the underlying osteoporosis or the fracture patterns seen in humans. As such the choice of species and model must be individualised to the scientific question being addressed. This article summarises general considerations when choosing an osteoporotic fracture model and outlines existing models of osteoporosis. The most appropriate model in a range of osteoporotic fracture research scenarios are subsequently considered.
Collapse
Affiliation(s)
- A Hamish Simpson
- Department of Trauma and Orthopaedics, The University of Edinburgh, Edinburgh, UK.
| | - Iain R Murray
- Department of Trauma and Orthopaedics, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Bastian JD, Bergmann M, Schwyn R, Keel MJB, Benneker LM. Assessment of the Breakaway Torque at the Posterior Pelvic Ring in Human Cadavers. J INVEST SURG 2015; 28:328-33. [PMID: 26270866 PMCID: PMC4732422 DOI: 10.3109/08941939.2015.1016249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose: To enhance the diminished screw purchase in cancellous, osteoporotic bone following the fixation of posterior pelvic ring injuries by iliosacral screws an increased bone-implant contact area using modificated screws, techniques or bone cement may become necessary. The aim of the study was to identify sites within the pathway of iliosacral screws requiring modifications of the local bone or the design of instrumentations placed at this site. Materials and Methods: The breakaway torque was measured mechanically at the iliosacral joint (“ISJ”), the sacral lateral mass (“SLM”) and the center of the S1 (“CS1”), at a superior and an inferior site under fluoroscopic control on five human cadaveric specimens (3 female; mean age 87 years, range: 76–99) using the DensiProbe™Spine device. Results: The measured median (range) breakaway torque was 0.63 Nm (0.31–2.52) at the “iliosacral joint”, 0.14 Nm (0.05–1.22) at the “sacral lateral mass”, 0.57 Nm (0.05–1.42) at the “S1 center.” The “sacral lateral mass” breakaway torque was lower than compared to that at the “iliosacral joint” (p < .001) or “S1 center” (p < .001). The median (range) breakaway torque measured at all superior measurement points was 0.52 Nm (0.10–2.52), and 0.48 Nm (0.05–1.18) at all inferior sites. The observed difference was statistically significant (p < .05). Conclusions: The lateral mass of the sacrum provides the lowest bone quality for implant anchorage. Iliosacral screws should be placed as superior as safely possible, should bridge the iliosacral joint and may allow for cement application at the lateral mass of the sacrum through perforations.
Collapse
Affiliation(s)
| | | | | | | | - Lorin Michael Benneker
- a Department of Orthopaedic and Trauma Surgery, Inselspital , University of Bern , Switzerland
| |
Collapse
|
16
|
Klein M, Stieger A, Stenger D, Scheuer C, Holstein JH, Pohlemann T, Menger MD, Histing T. Comparison of healing process in open osteotomy model and open fracture model: Delayed healing of osteotomies after intramedullary screw fixation. J Orthop Res 2015; 33:971-8. [PMID: 25732349 DOI: 10.1002/jor.22861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/31/2015] [Indexed: 02/04/2023]
Abstract
Murine osteotomy and fracture models have become the standard to study molecular mechanisms of bone healing. Because there is little information whether the healing of osteotomies differs from that of fractures, we herein studied in mice the healing of femur osteotomies compared to femur fractures. Twenty CD-1 mice underwent a standardized open femur osteotomy. Another 20 mice received a standardized open femur fracture. Stabilization was performed by an intramedullary screw. Bone healing was studied by micro-CT, biomechanical, histomorphometric and protein expression analyses. Osteotomies revealed a significantly lower biomechanical stiffness compared to fractures. Micro-CT showed a reduced bone/tissue volume within the callus of the osteotomies. Histomorphometric analyses demonstrated also a significantly lower amount of osseous tissue in the callus of osteotomies (26% and 88% after 2 and 5 weeks) compared to fractures (50% and 100%). This was associated with a delayed remodeling. Western blot analyses demonstrated comparable BMP-2 and BMP-4 expression, but higher levels of collagen-2, CYR61 and VEGF after osteotomy. Therefore, we conclude that open femur osteotomies in mice show a markedly delayed healing when stabilized less rigidly with an intramedullary screw. This should be considered when choosing a model for studying the mechanisms of bone healing in mice.
Collapse
Affiliation(s)
- Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Andrea Stieger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - David Stenger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Jörg H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, D-66421, Homburg/Saar, Germany
| |
Collapse
|
17
|
Steiner M, Volkheimer D, Meyers N, Wehner T, Wilke HJ, Claes L, Ignatius A. Comparison between different methods for biomechanical assessment of ex vivo fracture callus stiffness in small animal bone healing studies. PLoS One 2015; 10:e0119603. [PMID: 25781027 PMCID: PMC4363594 DOI: 10.1371/journal.pone.0119603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/14/2015] [Indexed: 01/28/2023] Open
Abstract
For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior). The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. Therefore, standardized specimens were created by selective laser sintering (SLS), mimicking size, directional behavior, and embedding variations of respective rat long bone specimens. For the latter, five different geometries were created which show shifted or tilted specimen alignments. The mechanical tests included three-point bending, four-point bending, cantilever bending, axial compression, constrained torsion, and unconstrained torsion. All three different bending tests showed the same principal behavior. They were highly dependent on the rotational direction of the maximum fracture callus expansion relative to the loading direction (creating experimental errors of more than 60%), however small angular deviations (<15°) were negligible. Differences in the experimental results between the bending tests originate in their respective location of maximal bending moment induction. Compared to four-point bending, three-point bending is easier to apply on small rat and mouse bones under realistic testing conditions and yields robust measurements, provided low variation of the callus shape among the tested specimens. Axial compressive testing was highly sensitive to embedding variations, and therefore cannot be recommended. Although it is experimentally difficult to realize, unconstrained torsion testing was found to be the most robust method, since it was independent of both rotational alignment and embedding uncertainties. Constrained torsional testing showed small errors (up to 16.8%, compared to corresponding alignment under unconstrained torsion) due to a parallel offset between the specimens’ axis of gravity and the torsional axis of rotation.
Collapse
Affiliation(s)
- Malte Steiner
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Germany
- * E-mail:
| | - David Volkheimer
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Germany
| | - Nicholaus Meyers
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Germany
| | - Tim Wehner
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Germany
| | - Lutz Claes
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
18
|
Zhang Y, Wang L, Deng F, Qiu H, Wu X. Determination of a critical size calvarial defect in senile osteoporotic mice model based on in vivo micro-computed tomography and histological evaluation. Arch Gerontol Geriatr 2015; 61:44-55. [PMID: 25682535 DOI: 10.1016/j.archger.2015.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate differences in the spontaneous healing capacity of senescence-prone inbred strains (SAMP6) and senescence-resistant inbred strains (SAMR1) and determine the critical defect size in a mouse model of senescence-accelerated osteoporosis. METHODS Unilateral full-thickness calvarial defects 2 or 4mm in diameter were made in 6-month-old male SAMP6 and SAMR1. Defects were evaluated in vivo by micro-CT at day 0 and 6 and 12 weeks postoperatively. Calvarial specimens were harvested at 12 weeks for hematoxylin and eosin staining, Masson's trichrome staining, and tartrate-resistant-acid-phosphatase (TRAP) staining. RESULTS Less new bone was observed in defects in SAMP6 compared to SAMR1 at 12 weeks postsurgery, with <5% healing in SAMP6 for both 2- and 4-mm defects compared to >5% healing in 2-mm defects in SAMRI (P<0.05). Histological analysis revealed dense connective tissue but little bone healing in 2- and 4-mm defects in SAMP6 and 4-mm defects in SAMR1. New bone was observed at the periphery of the 2-mm defects in SAMR1. Masson's trichrome staining also supported these findings. No obvious TRAP-positive cells were observed at the defect margins, but SAMP6 exhibited greater osteoclast numbers and surface areas in the diploë of contralateral bone compared to smaller osteoblast numbers and surface areas at the defect sites in SAMR1. CONCLUSIONS Defects of 2mm or larger in the cranium was critical-size or nonhealing defects in both SAMP6 and SAMR1. The differential findings on micro-CT and histomorphometry for the calvarial defect sites between SAMP6 and SAMR1 may imply different regenerative abilities of intramembranous ossification in these two strains.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Lu Wang
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| | - Feng Deng
- Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China
| | - Hongmei Qiu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Yixueyuan Road, Yuzhong, Chongqing 400016, China
| | - Xiaohong Wu
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshibei Road, Yubei, Chongqing 401147, China; Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| |
Collapse
|
19
|
Abstract
Animal models are widely used to investigate the pathogenesis of osteoporosis and for the clinical testing of anti-resorptive drugs. However, osteoporotic fracture models designed to investigate novel ways to treat fractures of osteoporotic bone must fulfil requirements distinct from those of pharmacological testing. Bone strength and toughness, implant fixation and osteointegration and fracture repair are of particular interest. Osteoporotic models should reflect the underlying clinical scenario be that primary type 1 (post-menopausal) osteoporosis, primary type 2 (senile) osteoporosis or secondary osteoporosis. In each scenario, small and large animal models have been developed. While rodent models facilitate the study of fractures in strains specifically established to facilitate understanding of the pathologic basis of disease, concerns remain about the relevance of small animal fracture models to the human situation. There is currently no all-encompassing model, and the choice of species and model must be individualized to the scientific question being addressed.
Collapse
Affiliation(s)
- A Hamish Simpson
- Department of Trauma and Orthopaedics, The University of Edinburgh, Chancellors Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK,
| | | |
Collapse
|
20
|
Lopas LA, Belkin NS, Mutyaba PL, Gray CF, Hankenson KD, Ahn J. Fractures in geriatric mice show decreased callus expansion and bone volume. Clin Orthop Relat Res 2014; 472:3523-32. [PMID: 25106797 PMCID: PMC4182401 DOI: 10.1007/s11999-014-3829-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/15/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. QUESTIONS/PURPOSES Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. METHODS Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n=104; young adult) and 25-month-old (n=107; which we defined as geriatric, and are approximately equivalent to 70-85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). RESULTS The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08±11.53 mm3 versus 43.19±18.39 mm3; p=0.009), density (mean bone mineral density at 20 days postfracture, 171.14±64.20 mg hydroxyapatite [HA]/cm3 versus 210.79±37.60 mg HA/cm3; p=0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279±46,755 square pixels versus 302,167±137,806 square pixels; p=0.013) and bone content (mean bone volume at 20 days postfracture, 11.68±3.18 mm3 versus 22.34±10.59 mm3; p<0.001) compared with the young adult mice. However, the amount of cartilage and bone relative to the total callus size was similar between the adult and geriatric mice (mean bone volume fraction at 25 days postfracture, 0.48±0.10 versus 0.50±0.13; p=0.793), and the relative expression of chondrogenic (mean fold change in SOX9 at 10 days postfracture, 135+25 versus 90±52; p=0.221) and osteogenic genes (mean fold change in osterix at 20 days postfracture, 22.2±5.3 versus 18.7±5.2; p=0.324) was similar. Analysis of mesenchymal cell proliferation in the geriatric mice relative to adult mice showed a decrease in proliferation (mean percent of undifferentiated mesenchymal cells staining proliferating cell nuclear antigen [PCNA] positive at 10 days postfracture, 25%±6.8% versus 42%±14.5%; p=0.047). CONCLUSIONS Our findings suggest that the molecular program of fracture healing is intact in geriatric mice, as it is in geriatric humans, but callus expansion is reduced in magnitude. CLINICAL RELEVANCE Our study showed altered healing capacity in a relevant animal model of geriatric fracture healing. The understanding that callus expansion and bone volume are decreased with aging can help guide the development of targeted therapeutics for these difficult to heal fractures.
Collapse
Affiliation(s)
- Luke A. Lopas
- />Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 2 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Nicole S. Belkin
- />Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 2 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Patricia L. Mutyaba
- />Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 2 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104 USA
- />Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, Kennett Square, PA USA
| | - Chancellor F. Gray
- />Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 2 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Kurt D. Hankenson
- />Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 2 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104 USA
- />Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, Kennett Square, PA USA
| | - Jaimo Ahn
- />Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 2 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
21
|
Ackerson RM, Shum LC, Berry AR, Bucknell AL, King KB. In vivo model to measure bone repair efficacy of nanoparticle-based drug delivery. Orthopedics 2014; 37:e707-11. [PMID: 25102506 DOI: 10.3928/01477447-20140728-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023]
Abstract
Bone repair required for successful arthroplasty can be compromised in patients with comorbid conditions, such as osteoporosis, diabetes mellitus, and chronic kidney disease. Biological compounds have been proposed to promote bone health and repair. The authors have designed a new animal model for testing bone promoting compounds in the in vivo environment. For initial validation of this model, they used a synthetic agonist of a nuclear receptor, liver X receptor, which has been postulated to play a regulatory role in modulating bone growth. A distal femoral unicortical osteotomy was surgically created on skeletally mature C57Bl/6 male and female mice. A nanoparticle carrier delivery system was used to directly introduce N,N-dimethyl-3β-hydroxycholenamide into the osteotomy. At 35 days post-procedure, the femora were harvested and specimens were obtained for histologic processing and qualitative analysis. The results indicate that the carrier nanoparticles entered the osteotomy defect. Results also indicate that bone repair occurred, although significant differences between groups were not detected in the current study. This study validates the mouse model for testing bone repair promoting compounds. This model can be combined with transgenic or other mouse models to simulate problematic bone repair environments, can be used with a variety of drug carriers, and can test many types of interventional compounds to evaluate potential orthopedic therapeutic applications.
Collapse
|
22
|
|