1
|
Weresa J, Pędzińska-Betiuk A, Schlicker E, Hirnle G, Mitrosz M, Malinowska B. Beneficial and harmful effects of CB 1 and CB 2 receptor antagonists on chronotropic and inotropic effects related to atrial β-adrenoceptor activation in humans and in rats with primary hypertension. Clin Exp Pharmacol Physiol 2021; 48:1547-1557. [PMID: 34333780 DOI: 10.1111/1440-1681.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
We have previously shown that cannabinoid CB1 and CB2 receptor antagonists, AM251 and AM630, respectively, modulate cardiostimulatory effects of isoprenaline in atria of Wistar rats. The aim of the present study was to examine whether such modulatory effects can also be observed (a) in the human atrium and (b) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Inotropic effects of isoprenaline and/or CGP12177 (that activate the high- and low-affinity site of β1 -adrenoceptors, respectively) were examined in paced human atrial trabeculae and rat left atria; chronotropic effects were studied in spontaneously beating right rat atria. AM251 modified cardiostimulatory effects more strongly than AM630. Therefore, AM251 (1 μM) enhanced the chronotropic effect of isoprenaline in WKY and SHR as well as inotropic action of isoprenaline in WKY and in human atria. It also increased the inotropic influence of CGP12177 in SHR. AM630 (1 μM) decreased the inotropic effect of isoprenaline and CGP12177 in WKY, but enhanced the isoprenaline-induced inotropic effect in SHR and human atria. Furthermore, AM251 (0.1 and 3 μM) and AM630 (0.1 μM) reduced the inotropic action of isoprenaline in human atria. In conclusion, cannabinoid receptor antagonists have potentially harmful and beneficial effects through their amplificatory effects on β-adrenoceptor-mediated positive chronotropic and inotropic actions, respectively.
Collapse
MESH Headings
- Animals
- Humans
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Male
- Rats, Inbred SHR
- Heart Atria/drug effects
- Heart Atria/metabolism
- Heart Atria/physiopathology
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Isoproterenol/pharmacology
- Hypertension/physiopathology
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/chemically induced
- Piperidines/pharmacology
- Myocardial Contraction/drug effects
- Heart Rate/drug effects
- Pyrazoles/pharmacology
- Rats, Inbred WKY
- Receptors, Adrenergic, beta/metabolism
- Indoles/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Female
- Propanolamines
Collapse
Affiliation(s)
- Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Grzegorz Hirnle
- Department of Cardiac Surgery, Medical University of Białystok, Białystok, Poland
| | - Maciej Mitrosz
- Department of Cardiac Surgery, Medical University of Białystok, Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
2
|
Kodavanti UP. Susceptibility Variations in Air Pollution Health Effects: Incorporating Neuroendocrine Activation. Toxicol Pathol 2019; 47:962-975. [PMID: 31594484 PMCID: PMC9353182 DOI: 10.1177/0192623319878402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Diverse host factors/phenotypes may exacerbate or diminish biological responses induced by air pollutant exposure. We lack an understanding of biological indicators of environmental exposures that culminate in a physiological response versus those that lead to adversity. Variations in response phenotype might arise centrally and/or at the local tissue level. In addition to genetic differences, the current evidence supports the roles of preexisting cardiopulmonary diseases, diabetes, diet, adverse prenatal environments, neurobehavioral disorders, childhood infections, microbiome, sex, and psychosocial stressors in modifying the susceptibility to air pollutant exposures. Animal models of human diseases, obesity, nutritional inadequacies, and neurobehavioral conditions have been compared with healthy controls to understand the causes of variations in susceptibility. Although psychosocial stressors have been associated with increased susceptibility to air pollutant effects, the contribution of neuroendocrine stress pathways in mediating these effects is just emerging. The new findings of neuroendocrine activation leading to systemic metabolic and immunological effects of air pollutants, and the potential contribution to allostatic load, emphasize the consideration of these mechanisms into susceptibility. Variations in susceptibility to air pollution health effects are likely to underlie host genetic and physiological conditions in concert with disrupted neuroendocrine circuitry that alters physiological stability under the influence of stressors.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Snow SJ, Cheng WY, Henriquez A, Hodge M, Bass V, Nelson GM, Carswell G, Richards JE, Schladweiler MC, Ledbetter AD, Chorley B, Gowdy KM, Tong H, Kodavanti UP. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil. Toxicol Sci 2019; 163:57-69. [PMID: 29329427 DOI: 10.1093/toxsci/kfy003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Wan-Yun Cheng
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Andres Henriquez
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Myles Hodge
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834
| | - Virgina Bass
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Gail M Nelson
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Gleta Carswell
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy E Richards
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Allen D Ledbetter
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Brian Chorley
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834
| | - Haiyan Tong
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| |
Collapse
|
4
|
Katoto PDMC, Thienemann F, Bulabula ANH, Esterhuizen TM, Murhula AB, Lunjwire PPM, Bihehe DM, Nachega JB. Prevalence and risk factors of metabolic syndrome in HIV-infected adults at three urban clinics in a post-conflict setting, eastern Democratic Republic of the Congo. Trop Med Int Health 2018; 23:795-805. [PMID: 29752857 DOI: 10.1111/tmi.13073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine the prevalence of and risk factors for metabolic syndrome (MS) in HIV-infected adults at three urban clinics in Bukavu, Democratic Republic of the Congo. DESIGN Cross-sectional study. METHODS From July to September 2016, baseline socio-demographics, risk factors and clinical characteristics were collected using a structured questionnaire or extracted from medical records. Fasting blood sugar and lipids were measured. MS was defined per the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) and the International Diabetes Federation (IDF) criteria. Adjusted odds ratio (OR) was generated through multivariate logistic regression models. RESULTS Of 495 participants, 356 (72%) were women and 474 (95.8%) were receiving antiretroviral therapy (ART). The median age (years) [interquartile range (IQR)] was 43 [36-51]. The overall prevalence of MS per NECP/ATP III and IDF criteria was 27% [95% CI: 20-35%] or 30% [95% CI: 23-38%], respectively. In a multivariate logistic regression, low physical activity (OR 2.47, 95% CI: 1.40-4.36); daily exposure to biomass fuel smoke (BMF) for more than 2 h (OR 2.18, 95% CI: 1.01-4.68); protease inhibitor containing ART (OR: 2.96, 95% CI: 1.07-8.18); and stavudine-containing ART regimen (OR: 2.57, 95% CI: 1.11-5.93) were independently associated with MS. CONCLUSIONS MS was highly prevalent in this hospital-based study population. Beside known traditional risk factors and contribution of specific ART regimens to MS, daily exposure to BMF is new and of specific concern, necessitating targeted urgent prevention and management interventions.
Collapse
Affiliation(s)
- Patrick D M C Katoto
- Department of Global Health, Community Health Division, Stellenbosch University, Cape Town, South Africa.,Department of Internal Medicine and the Hôpital Provincial Général de Reférence de Bukavu, Université Catholique de Bukavu, South Kivu, Democratic Republic of the Congo
| | - Friedrich Thienemann
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Internal Medicine, University Hospital Zurich, Zürich, Switzerland
| | - André N H Bulabula
- Department of Global Health, Unit for Infection Prevention and Control, Stellenbosch University, Cape Town, South Africa
| | - Tonya M Esterhuizen
- Biostatistics Unit, Centre for Evidence-Based Health Care, Stellenbosch University, Cape Town, South Africa
| | - Aimé B Murhula
- Department of Internal Medicine and the Hôpital Provincial Général de Reférence de Bukavu, Université Catholique de Bukavu, South Kivu, Democratic Republic of the Congo
| | | | - Dieudonné M Bihehe
- Department of Internal Medicine and Hôpital de Panzi, Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | - Jean B Nachega
- Department of Medicine and Centre for Infectious Diseases, Stellenbosch University, Cape Town, South Africa.,Departments of Epidemiology, Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.,Departments of Epidemiology and International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,International Center for Advanced Research and Training (ICART), Bukavu, Democratic Republic of the Congo
| |
Collapse
|
5
|
Dye JA, Costa DL, Kodavanti UP. Executive Summary: variation in susceptibility to ozone-induced health effects in rodent models of cardiometabolic disease. Inhal Toxicol 2016; 27 Suppl 1:105-15. [PMID: 26667335 DOI: 10.3109/08958378.2014.995388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Seven million premature deaths occur annually due to air pollution worldwide, of which ∼80% are attributed to exacerbation of cardiovascular disease (CVD), necessitating greater attention to understanding the causes of susceptibility to air pollution in this sector of population. We used rat models of CVD with or without obesity and compared them to healthy strains to examine the risk factors of ozone-induced lung injury and inflammation. We examined functional, biochemical and molecular changes in several organs to evaluate how physiological factors as well as compensatory antioxidant reserves modulate processes by which ozone injury is influenced by underlying disease. In this study, we highlight key findings of this series of reports. We show that underlying cardiopulmonary insufficiency in genetically predisposed rats appears to increase the effective ozone dose; thus dosimetry is one factor contributing to exacerbated ozone effects. We further show that antioxidant reserve in airway lining fluid modulates ozone-induced damage such that strains with the least antioxidant reserve incur the greatest injury. And finally, we show that the inflammatory response to ozone is governed by a cluster of genes involved in regulating cytokine release, trafficking of inflammatory cells and processes related to cellular apoptosis and growth. All such processes are influenced not only by ozone dosimetry and the lung antioxidant milieu but also by the strain-specific genetic factors. In using a comprehensive systems biology research approach, our data reveal key risk factors for--and strategies to reduce risk of--air pollution mortality among those with CVD.
Collapse
Affiliation(s)
- Janice A Dye
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory , Research Triangle Park , NC , USA and
| | - Daniel L Costa
- b National Program for Air Climate & Energy Research, Office of Research and Development, US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Urmila P Kodavanti
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory , Research Triangle Park , NC , USA and
| |
Collapse
|
6
|
Ramot Y, Kodavanti UP, Kissling GE, Ledbetter AD, Nyska A. Clinical and pathological manifestations of cardiovascular disease in rat models: the influence of acute ozone exposure. Inhal Toxicol 2016; 27 Suppl 1:26-38. [PMID: 26667329 DOI: 10.3109/08958378.2014.954168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rodent models of cardiovascular diseases (CVD) and metabolic disorders are used for examining susceptibility variations to environmental exposures. However, cross-model organ pathologies and clinical manifestations are often not compared. We hypothesized that genetic CVD rat models will exhibit baseline pathologies and will thus express varied lung response to acute ozone exposure. Male 12-14-week-old healthy Wistar Kyoto (WKY), Wistar (WIS), and Sprague-Dawley (SD) rats and CVD-compromised spontaneously hypertensive (SH), fawn-hooded hypertensive (FHH), stroke-prone SH (SHSP), obese SH heart-failure (SHHF), obese diabetic JCR (JCR) rats were exposed to 0.0, 0.25, 0.5, or 1.0 ppm ozone for 4 h and clinical biomarkers, and lung, heart and kidney pathologies were compared immediately following (0-h) or 20-h later. Strain differences were observed between air-exposed CVD-prone and WKY rats in clinical biomarkers and in kidney and heart pathology. Serum cholesterol was higher in air-exposed obese SHHF and JCR compared to other air-exposed strains. Ozone did not produce lesions in the heart or kidney. CVD-prone and SD rats demonstrated glomerulopathy and kidney inflammation (WKY = WIS = SH < SD = SHSP < SHHF < JCR = FHH) regardless of ozone. Cardiac myofiber degeneration was evident in SH, SHHF, and JCR, while only JCR tends to have inflammation in coronaries. Lung pathology in air-exposed rats was minimal in all strains except JCR. Ozone induced variable alveolar histiocytosis and bronchiolar inflammation; JCR and SHHF were less affected. This study provides a comparative account of the clinical manifestations of disease and early-life organ pathologies in several rat models of CVD and their differential susceptibility to lung injury from air pollutant exposure.
Collapse
Affiliation(s)
- Yuval Ramot
- a Hadassah - Hebrew University Medical Center , Jerusalem , Israel
| | - Urmila P Kodavanti
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | | | - Allen D Ledbetter
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Abraham Nyska
- d Department of Pathology , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
7
|
Ward WO, Kodavanti UP. Pulmonary transcriptional response to ozone in healthy and cardiovascular compromised rat models. Inhal Toxicol 2016; 27 Suppl 1:93-104. [PMID: 26667334 DOI: 10.3109/08958378.2014.954173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic insights into susceptibility differences to ozone. The lung expression profiles of healthy Wistar Kyoto (WKY) and CVD-compromised spontaneously hypertensive (SH), stroke-prone SH (SHSP), obese SH heart failure (SHHF) and obese, atherosclerosis-prone JCR rats were analyzed using Affymetrix platform immediately after 4-h air or 1 ppm ozone exposure. At baseline, the JCR exhibited the largest difference in the number of genes among all strains when compared with WKY. Interestingly, the number of genes affected by ozone was inversely correlated with genes different at baseline relative to WKY. A cluster of NFkB target genes involved in cell-adhesion, antioxidant response, inflammation and apoptosis was induced in all strains, albeit at different levels (JCR < WKY < SHHF < SH < SHSP). The lung metabolic syndrome gene cluster indicated expressions in opposite directions for SHHF and JCR suggesting different mechanisms for common disease phenotype and perhaps obesity-independent contribution to exacerbated lung disease. The differences in expression of adrenergic receptors and ion-channel genes suggested distinct mechanisms by which ozone might induce protein leakage in CVD models, especially SHHF and JCR. Thus, the pulmonary response to ozone in CVD strains was likely linked to the defining gene expression profiles. Differential transcriptional patterns between healthy and CVD rat strains at baseline, and after ozone suggests that lung inflammation and injury might be influenced by multiple biological pathways affecting inflammation gene signatures.
Collapse
Affiliation(s)
- William O Ward
- a Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Urmila P Kodavanti
- b Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
8
|
Kodavanti UP, Ledbetter AD, Thomas RF, Richards JE, Ward WO, Schladweiler MC, Costa DL. Variability in ozone-induced pulmonary injury and inflammation in healthy and cardiovascular-compromised rat models. Inhal Toxicol 2016; 27 Suppl 1:39-53. [PMID: 26667330 DOI: 10.3109/08958378.2014.954169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure dependent on the type and severity of disease. Healthy male 12-14-week-old Wistar Kyoto (WKY), Wistar (WS) and Sprague Dawley (SD); and CVD-compromised spontaneously hypertensive (SH), Fawn-Hooded hypertensive (FHH), stroke-prone spontaneously hypertensive (SHSP), obese spontaneously hypertensive heart failure (SHHF) and obese JCR (JCR) rats were exposed to 0.0, 0.25, 0.5, or 1.0 ppm ozone for 4 h; pulmonary injury and inflammation were analyzed immediately following (0-h) or 20-h later. Baseline bronchoalveolar lavage fluid (BALF) protein was higher in CVD strains except for FHH when compared to healthy. Ozone-induced increases in protein and inflammation were concentration-dependent within each strain but the degree of response varied from strain to strain and with time. Among healthy rats, SD were least affected. Among CVD strains, lean rats were more susceptible to protein leakage from ozone than obese rats. Ozone caused least neutrophilic inflammation in SH and SHHF while SHSP and FHH were most affected. BALF neutrophils and protein were poorly correlated when considering the entire dataset (r = 0.55). The baseline and ozone-induced increases in cytokine mRNA varied markedly between strains and did not correlate with inflammation. These data illustrate that the degree of ozone-induced lung injury/inflammation response is likely influenced by both genetic and physiological factors that govern the nature of cardiovascular compromise in CVD models.
Collapse
Affiliation(s)
| | | | | | | | - William O Ward
- b Research Cores Unit, National Health and Environmental Effects Research Laboratory , and
| | | | - Daniel L Costa
- c National Program for Air Climate and Energy Research, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
9
|
Hatch GE, Crissman K, Schmid J, Richards JE, Ward WO, Schladweiler MC, Ledbetter AD, Kodavanti UP. Strain differences in antioxidants in rat models of cardiovascular disease exposed to ozone. Inhal Toxicol 2016; 27 Suppl 1:54-62. [PMID: 26667331 DOI: 10.3109/08958378.2014.954170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the hypothesis that antioxidant substances and enzymes in lung, heart and in bronchoalveolar lavage fluid (BALF) are altered in response to O3 in cardiovascular disease and/or metabolic syndrome (CVD)-prone rat models. CVD strains [spontaneously hypertensive (SH), SH stroke-prone (SHSP), SHHF/Mcc heart failure obese (SHHF), insulin-resistant JCR:LA-cp obese (JCR) and Fawn-Hooded hypertensive (FHH)] were compared with normal strains [Wistar, Sprague-Dawley (SD) and Wistar Kyoto (WKY)]. Total glutathione (GSH + GSSG or GSx), reduced ascorbate (AH2), uric acid (UA) and antioxidant enzymes were determined in lung, heart and BALF immediately (0 h) or 20-h post 4-h nose-only exposure to 0.0, 0.25, 0.5 and 1.0 ppm O3. Basal- and O3-induced antioxidant substances in tissues varied widely among strains. Wistar rats had a robust O3-induced increase in GSx and AH2 in the lung. Two CVD strains (JCR and SHHF) had high basal levels of AH2 and GSx in BALF as well as high basal lung UA. Across all strains, high BALF GSx was only observed when high BALF AH2 was present. CVD rats tended to respond less to O3 than normal. High-basal BALF AH2 levels were associated with decreased O3 toxicity. In summary, large differences were observed between both normal and CVD rat strains in low-molecular weight antioxidant concentrations in lung, BALF and heart tissue. Wistar (normal) and JCR and SHHF (CVD) rats appeared to stand out as peculiar in terms of basal- or O3-induced changes. Results elucidate interactions among antioxidants and air pollutants that could enhance understanding of cardiopulmonary disease.
Collapse
Affiliation(s)
- Gary E Hatch
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Kay Crissman
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Judy Schmid
- b Research Cores Unit , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Judy E Richards
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - William O Ward
- b Research Cores Unit , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Mette C Schladweiler
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Allen D Ledbetter
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Urmila P Kodavanti
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| |
Collapse
|
10
|
Ward WO, Ledbetter AD, Schladweiler MC, Kodavanti UP. Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats. Inhal Toxicol 2016; 27 Suppl 1:80-92. [PMID: 26667333 DOI: 10.3109/08958378.2014.954172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute ozone-induced pulmonary injury and inflammation are well characterized in rats; however, mechanistic understanding of the pathways involved is limited. We hypothesized that acute exposure of healthy rats to ozone will cause transcriptional alterations, and comprehensive analysis of these changes will allow us to better understand the mechanism of pulmonary injury and inflammation. Male Wistar Kyoto rats (10-12 week) were exposed to air, or ozone (0.25, 0.5 or 1.0 ppm) for 4 h and pulmonary injury and inflammation were assessed at 0-h or 20-h (n = 8/group). Lung gene expression profiling was assessed at 0-h (air and 1.0 ppm ozone, n = 3-4/group). At 20-h bronchoalveolar lavage, fluid protein and neutrophils increased at 1 ppm ozone. Numerous genes involved in acute inflammatory response were up-regulated along with changes in genes involved in cell adhesion and migration, steroid metabolism, apoptosis, cell cycle control and cell growth. A number of NRF2 target genes were also induced after ozone exposure. Based on expression changes, Rela, SP1 and TP3-mediated signaling were identified to be mediating downstream changes. Remarkable changes in the processes of endocytosis provide the insight that ozone-induced lung injury and inflammation are likely initiated by changes in cell membrane components and receptors likely from oxidatively modified lung lining lipids and proteins. In conclusion, ozone-induced injury and inflammation are preceded by changes in gene targets for cell adhesion/migration, apoptosis, cell cycle control and growth regulated by Rela, SP1 and TP53, likely mediated by the process of endocytosis and altered steroid receptor signaling.
Collapse
Affiliation(s)
| | - Allen D Ledbetter
- b Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Mette C Schladweiler
- b Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Urmila P Kodavanti
- b Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
11
|
Ward WO, Kodavanti UP. Left ventricular gene expression profile of healthy and cardiovascular compromised rat models used in air pollution studies. Inhal Toxicol 2015; 27 Suppl 1:63-79. [DOI: 10.3109/08958378.2014.954171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- William O. Ward
- Biostatistics Core, Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Urmila P. Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Dye JA, Ledbetter AD, Schladweiler MC, Costa DL, Kodavanti UP. Whole body plethysmography reveals differential ventilatory responses to ozone in rat models of cardiovascular disease. Inhal Toxicol 2015; 27 Suppl 1:14-25. [DOI: 10.3109/08958378.2014.954167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janice A. Dye
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Allen D. Ledbetter
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Mette C. Schladweiler
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| | - Daniel L. Costa
- National Program for Air Climate & Energy Research, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P. Kodavanti
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA and
| |
Collapse
|