1
|
Qiu C, Sun N, Zeng S, Chen L, Gong F, Tian J, Xiong Y, Peng L, He H, Ming Y. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discov Oncol 2024; 15:501. [PMID: 39331302 PMCID: PMC11436538 DOI: 10.1007/s12672-024-01380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits remarkable invasiveness and is characterized by its intricate location, infiltrative behavior, the presence of both the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), phenotypic diversity, an immunosuppressive microenvironment with limited development yet rich vascularity, as well as the resistant nature of glioblastoma stem cells (GSCs) towards traditional chemotherapy and radiotherapy. These formidable factors present substantial obstacles in the quest for effective GBM treatments. Following extensive research spanning three decades, the hepatocellular receptor A2 (EphA2) receptor tyrosine kinase has emerged as a promising molecular target with translational potential in the realm of cancer therapy. Numerous compounds aimed at targeting EphA2 have undergone rigorous evaluation and clinical investigation. This article provides a comprehensive account of the distinctive roles played by canonical and non-canonical EphA2 signaling in various contexts, while also exploring the involvement of the EphA2-ephrin A1 signaling axis in GBM pathogenesis. Additionally, the review offers an overview of completed clinical trials targeting EphA2 for GBM treatment, shedding light on both the prospects and challenges associated with EphA2-directed interventions in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Caohang Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ning Sun
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Feilong Gong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Junjie Tian
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yu Xiong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Sichuan Clinical Research Center of Neurosurgery, Luzhou, 646000, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People's Republic of China.
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
2
|
Papadakos SP, Stergiou IE, Gkolemi N, Arvanitakis K, Theocharis S. Unraveling the Significance of EPH/Ephrin Signaling in Liver Cancer: Insights into Tumor Progression and Therapeutic Implications. Cancers (Basel) 2023; 15:3434. [PMID: 37444544 DOI: 10.3390/cancers15133434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer is a complex and challenging disease with limited treatment options and dismal prognosis. Understanding the underlying molecular mechanisms driving liver cancer progression and metastasis is crucial for developing effective therapeutic strategies. The EPH/ephrin system, which comprises a family of cell surface receptors and their corresponding ligands, has been implicated in the pathogenesis of HCC. This review paper aims to provide an overview of the current understanding of the role of the EPH/ephrin system in HCC. Specifically, we discuss the dysregulation of EPH/ephrin signaling in HCC and its impact on various cellular processes, including cell proliferation, migration, and invasion. Overall, the EPH/ephrin signaling system emerges as a compelling and multifaceted player in liver cancer biology. Elucidating its precise mechanisms and understanding its implications in disease progression and therapeutic responses may pave the way for novel targeted therapies and personalized treatment approaches for liver cancer patients. Further research is warranted to unravel the full potential of the EPH/ephrin system in liver cancer and its clinical translation.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna E Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolina Gkolemi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Tröster A, DiPrima M, Jores N, Kudlinzki D, Sreeramulu S, Gande SL, Linhard V, Ludig D, Schug A, Saxena K, Reinecke M, Heinzlmeir S, Leisegang MS, Wollenhaupt J, Lennartz F, Weiss MS, Kuster B, Tosato G, Schwalbe H. Optimization of the Lead Compound NVP-BHG712 as a Colorectal Cancer Inhibitor. Chemistry 2023; 29:e202203967. [PMID: 36799129 PMCID: PMC10133194 DOI: 10.1002/chem.202203967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (KD <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Nathalie Jores
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Santosh L. Gande
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Damian Ludig
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Alexander Schug
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
| | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Frank Lennartz
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
- German Cancer Consortium (DKTK), Partner-Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany)
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus, Building 37, Room 4124, Bethesda, MD 20892, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse7, 60438 Frankfurt am Main (Germany)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)
| |
Collapse
|
4
|
Husain A, Chiu YT, Sze KMF, Ho DWH, Tsui YM, Suarez EMS, Zhang VX, Chan LK, Lee E, Lee JMF, Cheung TT, Wong CCL, Chung CYS, Ng IOL. Ephrin-A3/EphA2 axis regulates cellular metabolic plasticity to enhance cancer stemness in hypoxic hepatocellular carcinoma. J Hepatol 2022; 77:383-396. [PMID: 35227773 DOI: 10.1016/j.jhep.2022.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The highly proliferative nature of hepatocellular carcinoma (HCC) frequently results in a hypoxic intratumoural microenvironment, which creates a therapeutic challenge owing to a lack of mechanistic understanding of the phenomenon. We aimed to identify critical drivers of HCC development and progression in the hypoxic microenvironment. METHODS We performed integrative analysis of multiple transcriptomic and genomic profiles specific for HCC and hypoxia and identified the Ephrin-A3/Eph receptor A2 (EphA2) axis as a clinically relevant and hypoxia-inducible signalling axis in HCC. The functional significance and mechanistic consequences of the Ephrin-A3/EphA2 axis were examined in EFNA3- and EPHA2- knockdown/overexpressing HCC cells. The potential downstream pathways were investigated by transcriptome sequencing, quantitative reverse-transcription PCR, western blotting analysis and metabolomics. RESULTS EFNA3 was frequently upregulated in HCC and its overexpression was associated with more aggressive tumour behaviours. HIF-1α directly and positively regulated EFNA3 expression under hypoxia. EFNA3 functionally contributed to self-renewal, proliferation and migration in HCC cells. EphA2 was identified as a key functional downstream mediator of EFNA3. Functional characterisation of the Ephrin-A3/EphA2 forward-signalling axis demonstrated a promotion of self-renewal ability and tumour initiation. Mechanistically, the Ephrin-A3/EphA2 axis promoted the maturation of SREBP1 and expression of its transcriptional target, ACLY, was significantly associated with the expression of EFNA3 and hypoxia markers in clinical cohorts. The metabolic signature of EPHA2 and ACLY stable knockdown HCC cells demonstrated significant overlap in fatty acid, cholesterol and tricarboxylic acid cycle metabolite profiles. ACLY was confirmed to mediate the self-renewal function of the Ephrin-A3/EphA2 axis. CONCLUSIONS Our findings revealed the novel role of the Ephrin-A3/EphA2 axis as a hypoxia-sensitive modulator of HCC cell metabolism and a key contributor to HCC initiation and progression. LAY SUMMARY Hepatocellular carcinoma (HCC) is a fast-growing tumour; hence, areas of the tumour often have insufficient vasculature and become hypoxic. The presence of hypoxia within tumours has been shown to negatively impact on the survival of patients with tumours, including HCC. Herein, we identified the Ephrin-A3/EphA2 axis as a key functional driver of tumour initiation and progression in response to hypoxia. Additionally, we showed that SREBP1-ACLY-mediated metabolic rewiring was an important downstream effector that induced cancer stemness in response to Ephrin-A3/EphA2 forward-signalling.
Collapse
Affiliation(s)
- Abdullah Husain
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yung-Tuen Chiu
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eliana Mary Senires Suarez
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Vanilla Xin Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Clive Yik-Sham Chung
- Department of Pathology, The University of Hong Kong, Hong Kong; School of Biomedical Science, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Sachdeva A, Hart CA, Kim K, Tawadros T, Oliveira P, Shanks J, Brown M, Clarke N. Non-canonical EphA2 activation underpins PTEN-mediated metastatic migration and poor clinical outcome in prostate cancer. Br J Cancer 2022; 127:1254-1262. [PMID: 35869144 PMCID: PMC9519535 DOI: 10.1038/s41416-022-01914-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background The key process of mesenchymal to amoeboid transition (MAT), which enables prostate cancer (PCa) transendothelial migration and subsequent development of metastases in red bone marrow stroma, is driven by phosphorylation of EphA2S897 by pAkt, which is induced by the omega-6 polyunsaturated fatty acid arachidonic acid. Here we investigate the influence of EphA2 signalling in PCa progression and long-term survival. Methods The mechanisms underpinning metastatic biopotential of altered EphA2 signalling in relation to PTEN status were assessed in vitro using canonical (EphA2D739N) and non-canonical (EphA2S897G) PC3-M mutants, interrogation of publicly available PTEN-stratified databases and clinical validation using a PCa TMA (n = 177) with long-term follow-up data. Spatial heterogeneity of EphA2 was assessed using a radical prostatectomy cohort (n = 67). Results Non-canonical EphA2 signalling via pEphA2S897 is required for PCa transendothelial invasion of bone marrow endothelium. High expression of EphA2 or pEphA2S897 in a PTENlow background is associated with poor overall survival. Expression of EphA2, pEphA2S897 and the associated MAT marker pMLC2 are spatially regulated with the highest levels found within lesion areas within 500 µm of the prostate margin. Conclusion EphA2 MAT-related signalling confers transendothelial invasion. This is associated with a substantially worse prognosis in PTEN-deficient PCa.
Collapse
|
6
|
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021; 40:2483-2495. [PMID: 33686241 PMCID: PMC8035212 DOI: 10.1038/s41388-021-01714-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.
Collapse
Affiliation(s)
- Kalin Wilson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eileen Shiuan
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
An L, Gaowa S, Cheng H, Hou M. Long-Term Outcomes Comparison of Endoscopic Resection With Gastrectomy for Treatment of Early Gastric Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:725. [PMID: 31440467 PMCID: PMC6693408 DOI: 10.3389/fonc.2019.00725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Endoscopic resection (ER) and gastrectomy have been both accepted as curative treatments for early gastric cancer. We intended to compare ER with gastrectomy treatments on safety of patients, disease-free survival and overall survival for early gastric cancer through this systematic review. Methods: A literature search was performed in Pubmed, Embase, and Cochrane Library databases. Studies that have compared ER with gastrectomy for early gastric cancer were included in this meta-analysis. We searched for clinical studies published before March 2019. Stata 12.0 software was used for systematic analysis. Results: Nine studies were included in this systematic review, ER treatment was associated with a shorter length of stay (WMD = -8.53, 95% CI -11.56 to -5.49), fewer postoperative complications (OR = 0.47, 95% CI 0.34-0.65). ER can be performed safely with shorter hospital stay and fewer postoperative complications than gastrectomy. Recurrence rate was higher for ER than for gastrectomy treatment (HR = 3.56, 95% CI 1.86-6.84), mainly because metachronous gastric cancers developed only in the ER treatment. However, most of the metachronous gastric cancers could be curatively treated with ER again, and it didn't affect overall survival of patients with early gastric cancer. There was no difference in overall survival rate between ER and gastrectomy (HR = 0.84, 95% CI 0.63-1.13). Conclusions: ER and gastrectomy are both acceptable for curative treatment of early gastric cancer. However, due to the comparable overall survival and lower postoperative complications and shorter length of stay, ER is better than gastrectomy for early gastric cancer, who met the indication for ER treatment.
Collapse
Affiliation(s)
- Liangliang An
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sharen Gaowa
- Department of Pathology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Haidong Cheng
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mingxing Hou
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Efazat G, Novak M, Kaminskyy VO, De Petris L, Kanter L, Juntti T, Bergman P, Zhivotovsky B, Lewensohn R, Hååg P, Viktorsson K. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget 2018; 7:60332-60347. [PMID: 27533087 PMCID: PMC5312387 DOI: 10.18632/oncotarget.11219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/16/2016] [Indexed: 02/07/2023] Open
Abstract
Ephrin receptors (Ephs) are reported to control metastatic signaling of non-small cell lung cancer (NSCLC) and other tumors. Here we show for the first time that blocking expression of the Eph ligand Ephrin B3 inhibits NSCLC cell migration and invasion. We demonstrate that Ephrin B3 directly binds the EphAs EphA2, EphA3, EphA4, and EphA5. EphA2 Ser897 was previously shown to drive migration propensity of tumor cells and our study reveals that EphA2 stays phosphorylated on Ser897 in the Ephrin B3/EphA2 complex in NSCLC cells of different histology. Moreover, we report that within such Ephrin B3/EphA2 complex both Akt Ser 129 and p38MAPK are found indicating a potential to drive migration/proliferation. We also found the EMT marker E-cadherin expression to be maintained or increased upon Ephrin B3 blockade in NSCLC cells. Expression of Ephrin B3 was furthermore analyzed in a cohort of NSCLC stage IA-IB cases (n=200) alongside EphA2 and Ephrin A1. We found that Ephrin B3 was concomitantly expressed with EphA2 and Ephrin A1 with higher Ephrin B3 levels found in non-squamous than in squamous tumors, whereas EphA2 was higher expressed in well-differentiated than in low-differentiated tumors. In the entire NSCLC cohort, Ephrin B3 expression was not linked to patient survival, whereas a high EphA2 expression was associated with improved survival (p=0.03). In conclusion, we show that blocking Ephrin B3 expression inhibits NSCLC proliferation-, migration- and invasion capacity which calls for further studies on interference with Ephrin B3 as a possible therapeutic avenue in this tumor malignancy.
Collapse
Affiliation(s)
- Ghazal Efazat
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Metka Novak
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Vitaliy O Kaminskyy
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Luigi De Petris
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lena Kanter
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Therese Juntti
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Per Bergman
- Department of Molecular Medicine and Surgery (MMK), Thoracic Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Rolf Lewensohn
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Petra Hååg
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Kristina Viktorsson
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|