1
|
Omokungbe B, Centurión A, Stiehler S, Morr A, Vilcinskas A, Steinbrink A, Hardes K. Gene silencing in the aedine cell lines C6/36 and U4.4 using long double-stranded RNA. Parasit Vectors 2024; 17:255. [PMID: 38863029 PMCID: PMC11167938 DOI: 10.1186/s13071-024-06340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.
Collapse
Affiliation(s)
- Bodunrin Omokungbe
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Alejandra Centurión
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Antonia Morr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany.
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
2
|
John R, Monpara J, Swaminathan S, Kalhapure R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024; 16:131. [PMID: 38276502 PMCID: PMC10819224 DOI: 10.3390/pharmaceutics16010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Jasmin Monpara
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Shankar Swaminathan
- Drug Product Development, Astellas Institute of Regenerative Medicine, Westborough, MA 01581, USA;
| | - Rahul Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Odin Pharmaceuticals LLC, 300 Franklin Square Dr, Somerset, NJ 08873, USA
| |
Collapse
|
3
|
Ayaz F, Ersan RH, Kuzu B, Algul O. New-Generation Benzimidazole-Based Plasmid Delivery Reagents with High Transfection Efficiencies on the Mammalian Cells. In Vitro Cell Dev Biol Anim 2020; 56:34-41. [DOI: 10.1007/s11626-019-00418-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
|
4
|
Campani V, Giarra S, De Rosa G. Lipid-based core-shell nanoparticles: Evolution and potentialities in drug delivery. OPENNANO 2018. [DOI: 10.1016/j.onano.2017.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Abstract
RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems.
Collapse
Affiliation(s)
- Hojun Kim
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Amino-ethoxilated fluorinated amphiphile: Synthesis, self-assembling properties and interactions with ssDNA. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2011.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Klein E, Leborgne C, Ciobanu M, Klein J, Frisch B, Pons F, Zuber G, Scherman D, Kichler A, Lebeau L. Nucleic acid transfer with hemifluorinated polycationic lipids. Biomaterials 2010; 31:4781-8. [DOI: 10.1016/j.biomaterials.2010.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
8
|
Alatorre-Meda M, González-Pérez A, Rodríguez JR. DNA–METAFECTENE™ PRO complexation: a physical chemistry study. Phys Chem Chem Phys 2010; 12:7464-72. [DOI: 10.1039/b920900j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
|
10
|
Marty R, N’soukpoé-Kossi CN, Charbonneau DM, Kreplak L, Tajmir-Riahi HA. Structural characterization of cationic lipid-tRNA complexes. Nucleic Acids Res 2009; 37:5197-207. [PMID: 19561199 PMCID: PMC2731917 DOI: 10.1093/nar/gkp543] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 01/22/2023] Open
Abstract
Despite considerable interest and investigations on cationic lipid-DNA complexes, reports on lipid-RNA interaction are very limited. In contrast to lipid-DNA complexes where lipid binding induces partial B to A and B to C conformational changes, lipid-tRNA complexation preserves tRNA folded state. This study is the first attempt to investigate the binding of cationic lipid with transfer RNA and the effect of lipid complexation on tRNA aggregation and condensation. We examine the interaction of tRNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant tRNA concentration and various lipid contents. FTIR, UV-visible, CD spectroscopic methods and atomic force microscopy (AFM) were used to analyze lipid binding site, the binding constant and the effects of lipid interaction on tRNA stability, conformation and condensation. Structural analysis showed lipid-tRNA interactions with G-C and A-U base pairs as well as the backbone phosphate group with overall binding constants of K(Chol) = 5.94 (+/- 0.8) x 10(4) M(-1), K(DDAB) = 8.33 (+/- 0.90) x 10(5) M(-1), K(DOTAP) = 1.05 (+/- 0.30) x 10(5) M(-1) and K(DOPE) = 2.75 (+/- 0.50) x 10(4) M(-1). The order of stability of lipid-tRNA complexation is DDAB > DOTAP > Chol > DOPE. Hydrophobic interactions between lipid aliphatic tails and tRNA were observed. RNA remains in A-family structure, while biopolymer aggregation and condensation occurred at high lipid concentrations.
Collapse
Affiliation(s)
- Regis Marty
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7 and Department of Physics and Atmospheric Science, Sir James Dunn Building, Dalhousie University, Lord Dalhousie Drive, Halifax, NS B3H 3J5, Canada
| | - Christophe N. N’soukpoé-Kossi
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7 and Department of Physics and Atmospheric Science, Sir James Dunn Building, Dalhousie University, Lord Dalhousie Drive, Halifax, NS B3H 3J5, Canada
| | - David M. Charbonneau
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7 and Department of Physics and Atmospheric Science, Sir James Dunn Building, Dalhousie University, Lord Dalhousie Drive, Halifax, NS B3H 3J5, Canada
| | - Laurent Kreplak
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7 and Department of Physics and Atmospheric Science, Sir James Dunn Building, Dalhousie University, Lord Dalhousie Drive, Halifax, NS B3H 3J5, Canada
| | - Heidar-Ali Tajmir-Riahi
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7 and Department of Physics and Atmospheric Science, Sir James Dunn Building, Dalhousie University, Lord Dalhousie Drive, Halifax, NS B3H 3J5, Canada
| |
Collapse
|
11
|
Marty R, N'soukpoé-Kossi CN, Charbonneau D, Weinert CM, Kreplak L, Tajmir-Riahi HA. Structural analysis of DNA complexation with cationic lipids. Nucleic Acids Res 2008; 37:849-57. [PMID: 19103664 PMCID: PMC2647290 DOI: 10.1093/nar/gkn1003] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content.
Collapse
Affiliation(s)
- Regis Marty
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières (Québec), Canada G9A 5H7
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The use and optimisation of plasmid DNA delivery systems for the purposes of eliciting transgene specific immune responses to orally administered DNA encoded antigen represents a significant challenge. Here, we have outlined a multicomponent polymer modified liposomal delivery system that offers potential for oral administration of plasmid DNA. It is shown that the polymer/liposome formulated DNA is able to elicit markedly enhanced transgene specific cytokine production following in vitro restimulation of splenocytes with recombinant antigen. This is discussed with reference to recent publications and the potential of plasmid DNA delivery systems for the purposes of genetic immunisation, as reported in selected literature, is assessed.
Collapse
Affiliation(s)
- S Somavarapu
- Centre for Drug Delivery Research, School of Pharmacy, University of London, UK
| | | | | |
Collapse
|
13
|
Wang L, MacDonald RC. Synergistic effect between components of mixtures of cationic amphipaths in transfection of primary endothelial cells. Mol Pharm 2007; 4:615-23. [PMID: 17408283 DOI: 10.1021/mp0601291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To date, the primary approach to improving the transfection properties of cationic lipids has been the synthesis of new kinds of cationic amphipaths. Recently, however, it was found that combining two cationic lipid derivatives having the same head group but tails of different chain lengths can provide another, and often superior, approach to higher transfection efficiency. For example, the combination of medium-chain and long-chain homologues of O-ethylphosphatidylcholine transfected DNA into primary human umbilical artery endothelial cells (HUAECs) more than 30-fold more efficiently than did either compound separately. Here it is reported that this synergism of mixtures is not limited to O-ethylphosphatidylcholine homologues, but is also exhibited by other common cationic amphipathic transfection reagents; for example, combining DC-Chol (3beta-[N',N'-dimethylaminoethane)-carbamol] cholesterol), dimethylditetradecylammonium bromide, or DMTAP (1,2-dimyristoyl-3-trimethylammonium-propane) with EDOPC increased transfection significantly both in the absence and in the presence of serum. Furthermore, combining a poorer transfection agent-dimethyldioctadecylammonium bromide-with dimethylditetradecylammonium bromide increased transfection by about an order of magnitude with a maximum at an intermediate composition. Lack of synergy occurred with some mixtures, such as DMTAP and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), in which case transfection activity was a linear function of composition both in the absence and presence of serum. Although the mechanism of enhanced transfection by mixtures is not fully understood, the existence of a number of optimal mixtures with diverse cationic compounds indicates that attention to mixture formulations can lead to greatly improved transfection by cationic amphipathic carriers.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
14
|
Boktov J, Hirsch-Lerner D, Barenholz Y. Characterization of the interplay between the main factors contributing to lipoplex-mediated transfection in cell cultures. J Gene Med 2007; 9:884-93. [PMID: 17721894 DOI: 10.1002/jgm.1079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfection efficiency of lipoplex-mediated gene delivery is multifactorial. However, the mode of interaction between the factors which affect transfection is not fully understood. To help fill this deficiency we evaluated the effect of the interplay between several variables that affect transfection efficiency in cell cultures. For this, we applied the Analysis of Variance Model with Fixed Effects and Repeated Measures to assess the data. The variables studied include: two different genes, Luc, and human growth hormone (hGH), in three different plasmids (two of which contain the luciferase (Luc) gene, but different promoter-enhancer regions (CMV and H19) and one plasmid coding hGH with a S16 promoter); three topoisoforms of pDNA (supercoiled (SC), open circular (OC), and closed circular (CC)); three cationic lipid compositions, all based on the monocationic lipid DOTAP (100% DOTAP, DOTAP/DOPE 1 : 1, and DOTAP/cholesterol 1 : 1, all ratios are mole ratios); two DNA-/L+ charge ratios (0.2 and 0.5); and two cell lines (NIH 3T3 and MBT-2). Our statistical analysis confirmed that the cell type, the gene used for transfection, the promoter type, the type of helper lipid, and DNA-/DOTAP+ charge ratio, all affect transfection efficiency in a statistically significant manner. The most efficient lipoplex formulation in both cell lines was that based on DOTAP (without helper lipid), having CC plasmid DNA. We suggest that for obtaining the most transfection-efficient lipoplex one should select the best topoisoform of pDNA for each particular cell type, and complex it with cationic liposomes having optimal lipid composition.
Collapse
Affiliation(s)
- Julia Boktov
- Laboratory of Membrane and Liposome Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
15
|
Meidan VM, Glezer J, Salomon S, Sidi Y, Barenholz Y, Cohen JS, Lilling G. Specific lipoplex-mediated antisense against Bcl-2 in breast cancer cells: a comparison between different formulations. J Liposome Res 2006; 16:27-43. [PMID: 16556548 DOI: 10.1080/08982100500528685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3ss[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms--either large unilamellar vesicles (approximately 100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.
Collapse
Affiliation(s)
- Victor M Meidan
- Department of Pharmaceutical Sciences, SIBS, University of Strathclyde, Glasgow, G4 0NR, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Simberg D, Weiss A, Barenholz Y. Reversible mode of binding of serum proteins to DOTAP/cholesterol Lipoplexes: a possible explanation for intravenous lipofection efficiency. Hum Gene Ther 2005; 16:1087-96. [PMID: 16149907 DOI: 10.1089/hum.2005.16.1087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are many indications that interaction of serum proteins with intravenously injected cationic lipoplexes disturbs lipofection in vitro and in vivo. However, transfection with certain lipid compositions such as N-[1- (2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol appears to be more resistant to serum and more efficacious. We investigated the mechanism of interaction between fluorescently labeled lipoplexes of the above composition and fluorescently labeled serum proteins. Fluorescence resonance energy transfer measurements in vitro indicate that serum proteins interact instantly and closely with the DOTAP/cholesterol lipoplexes. In accord with this, preinjection of fluorescently labeled serum into mice before injection of lipoplexes showed an immediate association of proteins with lipoplexes. Serum proteins colocalized with the lipoplexes in the lung vasculature; however, they dissociated from the cationic lipid as soon as 1 hr postinjection, probably because of displacement of serum proteins from lipoplexes by extracellular proteoglycans. Indeed, this displacement was imitated by heparin, a typical glycosaminoglycan, and could be explained by the inability of weakly acidic serum proteins to neutralize the DOTAP/cholesterol electrical surface potential psi0. The stability of the cationic lipid psi0 in serum could be a key reason for the high lung association and transfection efficiency with this formulation.
Collapse
Affiliation(s)
- Dmitri Simberg
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
17
|
Simberg D, Weiss A, Barenholz Y. Reversible Mode of Binding of Serum Proteins to DOTAP/Cholesterol Lipoplexes: A Possible Explanation for Intravenous Lipofection Efficiency. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Grinberg S, Linder C, Kolot V, Waner T, Wiesman Z, Shaubi E, Heldman E. Novel cationic amphiphilic derivatives from vernonia oil: synthesis and self-aggregation into bilayer vesicles, nanoparticles, and DNA complexants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7638-45. [PMID: 16089364 DOI: 10.1021/la050091j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembling nanostructures were prepared from novel cationic amphiphilic compounds synthesized from vernonia oil, a natural epoxydized triglyceride. The presence of a 12,13-epoxy group on the C18 unsaturated fatty acid, vernolic acid, which is the main constituent of vernonia oil, permitted the synthesis of novel amphiphilic derivatives with a hydrogen-bonding hydroxyl and a cationic headgroup moiety on adjacent carbon atoms. The amphiphiles were prepared in a two-stage synthesis that comprised opening of the epoxy groups with a haloacetic acid, followed by quaternization of the halo group with a tertiary amine containing a C12 aliphatic chain. Intact vernonia oil as the starting material gave a triple-headed cationic amphiphile, containing three vernolic acid derived moieties connected through a glycerol backbone. A single-headed amphiphile with two alkyl chains and a single quaternary ammonium headgroup was synthesized from the methyl ester of vernolic acid as the starting material. The triple-headed derivative could form nonencapsulating structures. Cholesterol was required in the formulation (1:1) to make spherical vesicles that could encapsulate a water-soluble marker. The single-headed derivative, however, formed spherical encapsulating vesicles without cholesterol. TEM, NMR, and FT-IR were used to characterize the vesicles, and molecular structure vs morphology relationships were postulated on the basis of these data. The triple-headed amphiphile also formed a DNA complex that was highly resistant to hydrolysis by DNase. This amphiphile-DNA complex was used as vector for gene transfer in cell culture demonstrating efficient DNA transfection.
Collapse
Affiliation(s)
- S Grinberg
- The Institutes for Applied Research, and The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hirsch-Lerner D, Zhang M, Eliyahu H, Ferrari ME, Wheeler CJ, Barenholz Y. Effect of “helper lipid” on lipoplex electrostatics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:71-84. [PMID: 16051183 DOI: 10.1016/j.bbamem.2005.04.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 03/24/2005] [Accepted: 04/15/2005] [Indexed: 11/28/2022]
Abstract
Lipoplexes, which are complexes between cationic liposomes (L+) and nucleic acids, are commonly used as a nucleic acid delivery system in vitro and in vivo. This study aimed to better characterize cationic liposome and lipoplex electrostatics, which seems to play a major role in the formation and the performance of lipoplexes in vitro and in vivo. We characterized lipoplexes based on two commonly used monocationic lipids, DOTAP and DMRIE, and one polycationic lipid, DOSPA--each with and without helper lipid (cholesterol or DOPE). Electrical surface potential (Psi0) and surface pH were determined using several surface pH-sensitive fluorophores attached either to a one-chain lipid (4-heptadecyl hydroxycoumarin (C17HC)) or to the primary amino group of the two-chain lipids (1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (CFPE) and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-7-hydroxycoumarin) (HC-DOPE). Zeta potentials of the DOTAP-based cationic liposomes and lipoplexes were compared with Psi0 determined using C17HC. The location and relatively low sensitivity of fluorescein to pH changes explains why CFPE is the least efficient in quantifying the differences between the various cationic liposomes and lipoplexes used in this study. The fact that, for all cationic liposomes studied, those containing DOPE as helper lipid have the least positive Psi0 indicates neutralization of the cationic charge by the negatively-charged phosphodiester of the DOPE. Zeta potential is much less positively charged than Psi0 determined by C17HC. The electrostatics affects size changes that occurred to the cationic liposomes upon lipoplex formation. The largest size increase (based on static light scattering measurements) for all formulations occurred at DNA-/L+ charge ratios 0.5-1. Comparing the use of the one-chain C17HC and the two-chain HC-DOPE for monitoring lipoplex electrostatics reveals that both are suitable, as long as there is no serum (or other lipidic assemblies) present in the medium; in the latter case, only the two-chain HC-DOPE gives reliable results. Increasing NaCl concentrations decrease surface potential. Neutralization by DNA is reduced in a NaCl-concentration-dependent manner.
Collapse
Affiliation(s)
- Danielle Hirsch-Lerner
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
20
|
Balaban AT, Ilies MA. Recent developments in cationic lipid-mediated gene delivery and gene therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.11.1729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Ahmad A, Evans HM, Ewert K, George CX, Samuel CE, Safinya CR. New multivalent cationic lipids reveal bell curve for transfection efficiency versus membrane charge density: lipid-DNA complexes for gene delivery. J Gene Med 2005; 7:739-48. [PMID: 15685706 DOI: 10.1002/jgm.717] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gene carriers based on lipids or polymers-rather than on engineered viruses-constitute the latest technique for delivering genes into cells for gene therapy. Cationic liposome-DNA (CL-DNA) complexes have emerged as leading nonviral vectors in worldwide gene therapy clinical trials. To arrive at therapeutic dosages, however, their efficiency requires substantial further improvement. METHODS Newly synthesized multivalent lipids (MVLs) enable control of headgroup charge and size. Complexes comprised of MVLs and DNA have been characterized by X-ray diffraction and ethidium bromide displacement assays. Their transfection efficiency (TE) in L-cells was measured with a luciferase assay. RESULTS Plots of TE versus the membrane charge density (sigmaM, average charge/unit area of membrane) for the MVLs and monovalent 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP) merge onto a universal, bell-shaped curve. This bell curve leads to the identification of three distinct regimes, related to interactions between complexes and cells: at low sigmaM, TE increases with increasing sigmaM; at intermediate sigmaM, TE exhibits saturated behavior; and unexpectedly, at high sigmaM, TE decreases with increasing sigmaM. CONCLUSIONS Complexes with low sigmaM remain trapped in the endosome. In the high sigmaM regime, accessible for the first time with the new MVLs, complexes escape by overcoming a kinetic barrier to fusion with the endosomal membrane (activated fusion), yet they exhibit a reduced level of efficiency, presumably due to the inability of the DNA to dissociate from the highly charged membranes in the cytosol. The intermediate, optimal regime reflects a compromise between the opposing demands on sigmaM for endosomal escape and dissociation in the cytosol.
Collapse
Affiliation(s)
- Ayesha Ahmad
- Departments of Materials, Physics, and Molecular, Cellular and Development Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-5121, USA
| | | | | | | | | | | |
Collapse
|
22
|
Eliyahu H, Makovitzki A, Azzam T, Zlotkin A, Joseph A, Gazit D, Barenholz Y, Domb AJ. Novel dextran–spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene Ther 2004; 12:494-503. [PMID: 15565162 DOI: 10.1038/sj.gt.3302395] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, a novel cationic polymer, dextran-spermine (D-SPM) was developed for gene delivery. An efficient transfection was obtained using this polycation for a variety of genes and cell lines in serum-free or serum-poor medium. However, transfection using the water-soluble D-SPM-based polyplexes decreased with increasing serum concentration in cell culture in a concentration-dependent manner, reaching 95% inhibition at 50% serum in the cell growth medium. In order to overcome this obstacle, oleyl derivatives of D-SPM (which form micelles in aqueous phase) were synthesized at 1, 10, and 20 mol% of oleyl moiety to polymer epsilon-NH2 to form N-oleyl-D-SPM (ODS). Polyplexes based on ODS transfected well in medium containing 50% serum. Comparison with polyplexes based on well-established polymers (branched and linear polyethyleneimine) and with DOTAP/Cholesterol lipoplexes showed that regarding beta-galactosidase transgene expression level and cytotoxicity in tissue culture, the D-SPM and ODS compare well with the above polyplexes and lipoplexes. Intracellular trafficking using FITC-labeled ODS and Rhodamine-labeled pGeneGrip plasmid cloned with hBMP2 monitored by confocal microscopy revealed that during the transfection process the fluorescent-labeled polymer concentrates in the Golgi apparatus and around the nucleus, while the cell cytoplasm was free of fluorescent particles, suggesting that the polyplexes move in the cell toward the nucleus by vesicular transport through the cytoplasm and not by a random diffusion. We found that the plasmids penetrate the cell nucleus without the polymer. Preliminary results in zebra fish and mice demonstrate the potential of ODS to serve as an efficient nonviral vector for in vivo transfection.
Collapse
Affiliation(s)
- H Eliyahu
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University--Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Simberg D, Weisman S, Talmon Y, Faerman A, Shoshani T, Barenholz Y. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J Biol Chem 2003; 278:39858-65. [PMID: 12869564 DOI: 10.1074/jbc.m302232200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following intravenous administration of cationic lipid-DNA complexes (lipoplexes) into mice, transfection (lipofection) occurs predominantly in the lungs. This was attributed to high entrapment of lipoplexes in the extended lung vascular tree. To determine whether lipofection in other organs could be enhanced by increasing the degree of vascularization, we used a transgenic mouse model with tissue-specific angiogenesis in liver. Tail vein injection of N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol lipoplexes resulted in increased lipoplex entrapment in hypervascularized liver but did not boost luciferase expression, suggesting that lipoplex delivery is not a sufficient condition for efficient organ lipofection. Because the intravenously injected lipoplexes migrated within seconds to lungs, we checked whether the effects of immediate contact with serum correlate with lung lipofection efficiency of different DOTAP-based formulations. Under conditions mimicking the injection environment, the lipoplex-serum interaction was strongly dependent on helper lipid and ionic strength: lipoplexes prepared in 150 mM NaCl or lipoplexes with high (>33 mol%) cholesterol were found to aggregate immediately. This aggregation process was irreversible and was inversely correlated with the percentage of lung cells that took up lipoplexes and with the efficiency of lipofection. No other structural changes in serum were observed for cholesterol-based lipoplexes. Dioleoyl phosphatidylethanolamine-based lipoplexes were found to give low expression, apparently because of an immediate loss of integrity in serum, without lipid-DNA dissociation. Our study suggests that efficient in vivo lipofection is the result of cross-talk between lipoplex composition, interaction with serum, hemodynamics, and target tissue "susceptibility" to transfection.
Collapse
Affiliation(s)
- Dmitri Simberg
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Ben-Yehuda A, Joseph A, Barenholz Y, Zeira E, Even-Chen S, Louria-Hayon I, Babai I, Zakay-Rones Z, Greenbaum E, Galprin I, Glück R, Zurbriggen R, Kedar E. Immunogenicity and safety of a novel IL-2-supplemented liposomal influenza vaccine (INFLUSOME-VAC) in nursing-home residents. Vaccine 2003; 21:3169-78. [PMID: 12804845 DOI: 10.1016/s0264-410x(03)00251-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Influenza and its complications account for substantial morbidity and mortality, especially among the elderly. In young adults, immunization provides 70-90% protection, while among the elderly the vaccine may be only </=50% effective; hence, the need for new, more immunogenic vaccines. We compared the safety and immunogenicity of a novel, interleukin-2 (IL-2) -supplemented trivalent liposomal influenza vaccine (designated INFLUSOME-VAC) with that of a commercial trivalent split virion vaccine in community-residing elderly volunteers (mean age 81 years) in winter of 2000/2001. Eighty-one individuals were randomly assigned to be vaccinated intramuscularly, either with the standard vaccine (n=33) or with INFLUSOME-VAC (n=48) prepared from the former. The two vaccines contained equal amounts of hemagglutinin (HA) ( approximately 15 microgram of each viral strain); INFLUSOME-VAC consisted of liposomal antigens admixed with liposomal human IL-2 (Lip IL-2) (33 microgram = 6x10(5) IU/dose). At 1 month post-vaccination, seroconversion rates (tested by hemagglutination inhibition) for the A/New Caledonia (H1N1) and A/Moscow (H3N2) strains were significantly higher (P=0.04) in the INFLUSOME-VAC group (65 versus 45%, 44 versus 24%, respectively). Moreover, INFLUSOME-VAC induced a greater anti-neuraminidase (NA-N2) response (P<0.05). Anti-IL-2 antibodies were undetected, and no increase in anti-phospholipid IgG antibodies was found in the INFLUSOME-VAC group. Adverse reactions were similar in both groups. Thus, INFLUSOME-VAC appears to be both safe and more immunogenic than the currently used vaccine in the elderly.
Collapse
Affiliation(s)
- Arie Ben-Yehuda
- Department of Internal Medicine, Hadassah Medical Center, Jerusalem, 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cationic Lipid-Nucleic Acid Complexes (Lipoplexes): from Physicochemical Properties to In Vitro and In Vivo Transfection Kits. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-007-0958-4_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Shmeeda H, Even-Chen S, Honen R, Cohen R, Weintraub C, Barenholz Y. Enzymatic Assays for Quality Control and Pharmacokinetics of Liposome Formulations: Comparison with Nonenzymatic Conventional Methodologies. Methods Enzymol 2003; 367:272-92. [PMID: 14611070 DOI: 10.1016/s0076-6879(03)67017-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hilary Shmeeda
- Shaare Zedek Medical Center, Department of Experimental Oncology, POB 3235, Jerusalem 91031, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Rita S. Dias
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal, and Physical Chemistry 1, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00 Lund, Sweden
| | - Björn Lindman
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal, and Physical Chemistry 1, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00 Lund, Sweden
| | - Maria G. Miguel
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal, and Physical Chemistry 1, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
28
|
Shmeeda H, Kaspler P, Shleyer J, Honen R, Horowitz M, Barenholz Y. Heat acclimation in rats: modulation via lipid polyunsaturation. Am J Physiol Regul Integr Comp Physiol 2002; 283:R389-99. [PMID: 12121852 DOI: 10.1152/ajpregu.00423.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat acclimation of rats has been shown to enhance endurance of rat hearts to ischemic insult and acute heat stress. Common protective features have been shown to be operative during both these stress-inducing conditions. To explore the role of membrane lipid composition in the adaptive response, we analyzed two major parameters that impact membrane dynamics and order, the nonesterified cholesterol levels and the acyl chain composition of phospholipids, in rat heart and salivary glands, both major thermoregulatory organs, in short- and long-term heat-acclimated rats. Before exposure to heat, control salivary gland tissue has a higher cholesterol-to-phospholipid mole ratio (0.32 +/- 0.02) than heart (0.14 +/- 0.01), and the acyl chains of its phospholipids are 50% more saturated. The remodeling strategies of the tissues after exposure to heat differed. Heart cholesterol levels increased after short-term heat acclimation (approximately 50%), whereas salivary gland cholesterol levels decreased in acute heat stress and long-term heat acclimation (approximately 32%). Remodeling of phospholipid acyl chains, particularly an increase in docosahexaenoic acid, was a protective strategy in both tissues (57% in heart and >100% in salivary glands). Modifying membrane lipid composition by treating rats with liposomes composed of egg phosphatidylcholine (PC) before exposure to heat resulted in a 38% increase in endurance to thermal stress. The density and affinity of muscarinic receptors of submaxillary salivary glands, involved in the acclimation response, were measured in control and PC liposome-treated rats, and then both groups were subjected to short-term heat acclimation. After PC treatment the well-established compensatory upregulation of the muscarinic receptors and concomitant decrease in their affinity was blunted. The substantial increase in the thermal endurance of heat-challenged intact rats after treatment with PC liposomes (600 vs. 200 min) suggests that membrane lipid composition plays a role in the ability of these tissues to respond to heat stress.
Collapse
Affiliation(s)
- Hilary Shmeeda
- Department of Biochemistry, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | | | |
Collapse
|
29
|
Eliyahu H, Servel N, Domb AJ, Barenholz Y. Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery. Gene Ther 2002; 9:850-8. [PMID: 12080379 DOI: 10.1038/sj.gt.3301705] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Accepted: 02/15/2002] [Indexed: 11/09/2022]
Abstract
We report a study aiming to characterize the interaction of blood and blood components with lipoplexes under conditions relevant to in vivo intravenous transfection. In this study we focus on the interaction of lipoplexes with red blood cells (RBC). It was found that no significant hemolysis occurred during several hours' incubation using lipoplex compositions and lipoplex/red blood cell ratios in the range commonly used for in vivo transfection. However, the interaction of RBC with lipoplexes resulted in massive agglutination, which occurs irrespective of the type of cationic lipid or helper lipid. Agglutination was also induced by polyplexes (such as dendrimer/DNA complexes) and lipoplexes in the presence of spermidine or protamine sulfate (the latter induced hemagglutination by itself). DSPE-PEG(2000) inserted into the lipoplexes inhibits hemagglutination somewhat. In order to understand the effect of serum on the agglutination better, plasma was separated into its high molecular weight components (HMWC, >14 kDa) and its low molecular weight components (LMWC, < or = 14 kDa). These fractions were characterized for their level of proteins, primary amino groups, osmotic pressure, and electrical conductivity, and compared with saline (0.15 M NaCl). It was found that both LMWC and HMWC inhibit agglutination by themselves, although whole serum demonstrates better hemagglutination inhibition than each fraction separately. The inhibitory effect of the serum (or plasma) is explained by its effect on the electrostatics of the lipoplexes, reducing their positive charge, as was demonstrated using fluorescein-phosphatidylethanolamine-labeled lipoplexes. The effect of LMWC was related to ionic strength and was equal to the effect of 0.15 M NaCl. The level of agglutination was reduced with increasing lipoplex DNA(-)/cationic lipid(+) (DNA(-)/L(+)) ratio. However, at the low DNA(-)/L(+) ratio needed to achieve significant in vivo transfection after i.v. administration, massive agglutination occurred. These data suggest that i.v. administration of lipoplexes and polyplexes may lead to RBC agglutination, and the agglutinates formed may explain the localization of lipoplexes and expression of their transgenes in the lungs.
Collapse
Affiliation(s)
- H Eliyahu
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
30
|
Simberg D, Danino D, Talmon Y, Minsky A, Ferrari ME, Wheeler CJ, Barenholz Y. Phase behavior, DNA ordering, and size instability of cationic lipoplexes. Relevance to optimal transfection activity. J Biol Chem 2001; 276:47453-9. [PMID: 11564736 DOI: 10.1074/jbc.m105588200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms of cationic lipid-based nucleic acid delivery are receiving increasing attention, but despite this the factors that determine high or low activity of lipoplexes are poorly understood. This study is focused on the fine structure of cationic lipid-DNA complexes (lipoplexes) and its relevance to transfection efficiency. Monocationic (N-(1-(2,3-dioleoyloxy)propyl),N,N,N-trimethylammonium chloride, N-(1-(2,3-dimyristyloxypropyl)-N,N-dimethyl-(2-hydroxyethyl)ammonium bromide) and polycationic (2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate) lipid-based assemblies, with or without neutral lipid (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, cholesterol) were used to prepare lipoplexes of different L(+)/DNA(-) charge ratios. Circular dichroism, cryogenic-transmission electron microscopy, and static light scattering were used for lipoplex characterization, whereas expression of human growth hormone or green fluorescent protein was used to quantify transfection efficiency. All monocationic lipids in the presence of inverted hexagonal phase-promoting helper lipids (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, cholesterol) induced appearance of Psi(-) DNA, a chiral tertiary DNA structure. The formation of Psi(-) DNA was also dependent on cationic lipid-DNA charge ratio. On the other hand, monocationic lipids either alone or with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine as helper lipid, or polycationic 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanammonium trifluoroacetate-based assemblies, neither of which promotes a lipid-DNA hexagonal phase, did not induce the formation of Psi(-) DNA. Parallel transfection studies reveal that the size and phase instability of the lipoplexes, and not the formation of Psi(-) DNA structure, correlate with optimal transfection.
Collapse
Affiliation(s)
- D Simberg
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Kerner M, Meyuhas O, Hirsch-Lerner D, Rosen LJ, Min Z, Barenholz Y. Interplay in lipoplexes between type of pDNA promoter and lipid composition determines transfection efficiency of human growth hormone in NIH3T3 cells in culture. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1532:128-36. [PMID: 11420182 DOI: 10.1016/s1388-1981(01)00118-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was aimed to investigate if and to what extent there is an interplay between lipoplex physicochemical properties and plasmid promoter type affecting transfection efficiency in vitro. To reduce the number of variables only one cell type (NIH3T3 cells), one gene (human growth hormone), one cationic lipid (DOTAP) in a plasmid >85% in supercoiled form, and the same medium conditions were used. The variables of the physicochemical properties included presence and type of helper lipid (DOPE, DOPC, or cholesterol, all in 1:1 mole ratio with DOTAP), size and lamellarity of the liposomes used for lipoplex preparation (large unilamellar vesicles, LUV, versus multilamellar vesicles, MLV), and DNA(-)/cationic lipid(+) charge ratio, all containing the same human growth hormone but differing in their promoter enhancer region. Two of the promoters were of viral origin: (a) SV40 promoter (simian virus early promoter) and (b) CMV promoter (cytomegalovirus early promoter); two were of mammalian cell origin: (c) PABP promoter (human poly(A)-binding protein promoter) and (d) S16 promoter (mouse ribosomal protein (rp) S16 promoter). Transfection studies showed that, irrespective of promoter type, large (> or =500 nm) MLV were superior to approximately 100 nm LUV; the extent of superiority was dependent on liposome lipid composition (larger for 100% DOTAP and DOTAP/DOPE than for DOTAP/DOPC and DOTAP/cholesterol). The optimal DNA(-)/DOTAP(+) charge ratio for all types of lipoplexes used was 0.2 or 0.5 (namely, when the lipoplexes were positively charged). Scoring the six best lipoplex formulations (out of 128 studied) revealed the following order: pCMV (DOTAP/DOPE) >> pSV (DOTAP/DOPE)=pCMV(DOTAP/cholesterol)=pS16 (100% DOTAP)=pS16 DOTAP/DOPE >> pCMV (DOTAP/DOPC). The lack of trivial consistency in the transfection efficiency score, the pattern of transfection efficiency, and statistical analysis of the data suggest that there is cross-talk between promoter type and lipoplex lipid composition, which may be related to the way the promoter is associated with the lipids.
Collapse
Affiliation(s)
- M Kerner
- Department of Biochemistry, Hebrew University--Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Peleg-Shulman T, Gibson D, Cohen R, Abra R, Barenholz Y. Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:278-91. [PMID: 11342165 DOI: 10.1016/s0005-2736(00)00359-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive scientific efforts are directed towards finding new and improved platinum anticancer agents. A promising approach is the encapsulation of cisplatin in sterically stabilized, long circulating, PEGylated 100 nm liposomes. This liposomal cisplatin (STEALTH cisplatin, formerly known as SPI-77) shows excellent stability in plasma and has a longer circulation time, greater efficacy and lower toxicity than much free cisplatin. However, so far, the physicochemical characterization of STEALTH cisplatin has been limited to size distribution, drug-to-lipid ratio and stability. Information on the physical state of the drug in the liposome aqueous phases and the drug's interaction with the liposome membrane has been lacking. This study was aimed at filling this gap. We report a multinuclear NMR study in which several techniques have been used to assess the physical nature of cisplatin in liposomal formulations and if and to what extent the drug affects the liposome phospholipids. Since NMR detects only the soluble cisplatin in the liposomes and not the insoluble drug, combining NMR and atomic absorption data enables one to determine how much of the encapsulated drug is soluble in the intraliposomal aqueous phase. Our results indicate that almost all of the cisplatin remains intact during the loading process, and that the entire liposomal drug is present in a soluble form in the internal aqueous phase of the liposomes.
Collapse
Affiliation(s)
- T Peleg-Shulman
- Department of Medicinal Chemistry, School of Pharmacy, University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Even-Chen S, Barenholz Y. DOTAP cationic liposomes prefer relaxed over supercoiled plasmids. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:176-88. [PMID: 11118529 DOI: 10.1016/s0005-2736(00)00292-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the supercoiled form. This preference is much more pronounced when the cationic liposome formulation is based on the monocationic lipid DOTAP than on the polycationic lipid DOSPA. The preference of DOTAP formulations to bind to the relaxed DNA plasmid suggests that the binding of supercoiled DNA is weaker and easier to dissociate from the complex.
Collapse
Affiliation(s)
- S Even-Chen
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University - Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | | |
Collapse
|