1
|
Low-Salt or Salt-Free Dyeing of Cotton Fibers with Reactive Dyes using Liposomes as Dyeing/Level-Dyeing Promotors. Sci Rep 2018; 8:13045. [PMID: 30158565 PMCID: PMC6115468 DOI: 10.1038/s41598-018-31501-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
The main aim of this investigation was to promote the dyeing and level-dyeing effect of reactive dyes on cotton-fiber dyeing by encapsulating reactive dyes in liposomes as an alternative to sodium chloride. The results obtained indicated that liposomes, especially cationic liposomes, have a remarkable level-dyeing promoting effect on cotton fibers, although the dyeing promoting effect was not as good as that of sodium chloride. The optimum dyeing and level-dyeing effects were achieved at a dye-fixing temperature of 85 °C, sodium carbonate concentration of 10 g/L and dye dosage of 2% (on the basis of oven-dry cotton fibers) when liposomes were used as the dyeing and level-dyeing promoters. The combination of cationic liposomes and sodium chloride can significantly promote both the dyeing and level-dyeing of cotton fibers. These results indicated the potential of cationic liposomes as novel dyeing and level-dyeing promoters or microencapsulated dye wall materials for reactive-dye dyeing applications.
Collapse
|
2
|
Roy B, Guha P, Bhattarai R, Nahak P, Karmakar G, Chettri P, Panda AK. Influence of Lipid Composition, pH, and Temperature on Physicochemical Properties of Liposomes with Curcumin as Model Drug. J Oleo Sci 2017; 65:399-411. [PMID: 27150333 DOI: 10.5650/jos.ess15229] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The physicochemical properties of large unilamellar vesicles (LUVs) were assessed with respect to lipid composition, pH, time, and temperature by monitoring their size, zeta potential, drug payload, and thermal behavior. A conventional thin film hydration technique was employed to prepare liposomes from soy phosphatidylcholine (SPC), dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and a 7:3 (M/M) mixture of DPPC+DPPG along with 30 mole% cholesterol in each combination. While the size of liposomes depended on lipid composition, pH and temperature, the zeta potential was found to be independent of the pH of the medium, although it varied with liposome type. Spherical morphology and bilayer were observed by electron microscopy. The phase transition temperature increased with decreasing pH. Membrane micro-viscosity showed the highest value for SPC, and membrane rigidity increased with increasing pH. The entrapment efficiency of liposomes with reference to curcumin was as follows: DPPC>DPPC+DPPG>DPPG>SPC. Sustained release of curcumin was observed for all liposomes. Curcumin-loaded liposomes exhibited substantial antibacterial activity against the gram-positive bacteria Bacillus amyloliquefaciens. Additional studies are needed to improve the understanding of the effect of formulation variables on the physicochemical stability of liposomes.
Collapse
Affiliation(s)
- Biplab Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University
| | | | | | | | | | | | | |
Collapse
|
3
|
Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Appl Microbiol Biotechnol 2015; 99:8235-45. [DOI: 10.1007/s00253-015-6648-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
|
4
|
Guha P, Roy B, Karmakar G, Nahak P, Koirala S, Sapkota M, Misono T, Torigoe K, Panda AK. Ion-pair amphiphile: a neoteric substitute that modulates the physicochemical properties of biomimetic membranes. J Phys Chem B 2015; 119:4251-62. [PMID: 25715819 DOI: 10.1021/jp512212u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ion-pair amphiphiles (IPAs) are neoteric pseudo-double-tailed compounds with potential as a novel substitute of phospholipid. IPA, synthesized by stoichiometric/equimolar mixing of aqueous solution of hexadecyltrimethylammonium bromide (HTMAB) and sodium dodecyl sulfate (SDS), was used as a potential substituent of naturally occurring phospholipid, soylecithin (SLC). Vesicles were prepared using SLC and IPA in different ratios along with cholesterol. The impact of IPA on SLC was examined by way of surface pressure (π)-area (A) measurements. Associated thermodynamic parameters were evaluated; interfacial miscibility between the components was found to depend on SLC/IPA ratio. Solution behavior of the bilayers, in the form of vesicles, was investigated by monitoring the hydrodynamic diameter, zeta potential, and polydispersity index over a period of 100 days. Size and morphology of the vesicles were also investigated by electron microscopic studies. Systems comprising 20 and 40 mol % IPA exhibited anomalous behavior. Thermal behavior of the vesicles, as scrutinized by differential scanning calorimetry, was correlated with the hydrocarbon chain as well as the headgroup packing. Entrapment efficiency (EE) of the vesicles toward the cationic dye methylene blue (MB) was also evaluated. Vesicles were smart enough to entrap the dye, and the efficiency was found to vary with IPA concentration. EE was found to be well above 80% for some stable dispersions. Such formulations thus could be considered to have potential as novel drug delivery systems.
Collapse
Affiliation(s)
- Pritam Guha
- †Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Biplab Roy
- †Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Gourab Karmakar
- †Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Prasant Nahak
- †Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| | - Suraj Koirala
- ‡Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, Rangpo, East Sikkim 737136, India
| | - Manish Sapkota
- ‡Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, Rangpo, East Sikkim 737136, India
| | - Takeshi Misono
- §Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Tokyo 278-8510, Japan
| | - Kanjiro Torigoe
- §Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Tokyo 278-8510, Japan
| | - Amiya Kumar Panda
- †Department of Chemistry, University of North Bengal, Darjeeling 734 013, West Bengal, India
| |
Collapse
|