1
|
Wróblewska AM, Łukawska E, Wakuła Z, Zajda J, Keppler BK, Timerbaev AR, Matczuk M. Toward the boosted loading of cisplatin drug into liposome nanocarriers. Eur J Pharm Biopharm 2024; 198:114245. [PMID: 38458266 DOI: 10.1016/j.ejpb.2024.114245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Current challenges in oncology are largely associated with the need to improve the effectiveness of cancer treatment and to reduce drug's side effects. An effective strategy to cope with these challenges is behind designing and developing drug delivery systems based on smart nanomaterials and approved anticancer drugs. The present study offers a novel and straightforward approach to efficiently load the cisplatin drug into the newly constructed liposome-based nanosystems as well a reliable technique for monitoring this process based on capillary electrophoresis hyphenated with inductively coupled plasma tandem mass spectrometry. The proposed drug-loading methodology comprises liposome formation via a simple ethanol-injection method and propels increased drug encapsulation using tailor-made freeze-thawing or lyophilization-hydration procedures. To optimize liposome generation and drug encapsulation, the effects of dilution medium and liposome composition (types of phospholipids and their percentage ratio) have been investigated in detail. It was shown that modest alterations of the composition of three-component phospholipid liposomes and parameters of the freeze-thawing procedure have a strong impact on the formation of cisplatin-liposome systems. The obtained cisplatin-liposome formulation features a remarkable degree of drug encapsulation, over 100 mg L-1, and holds promise for further preclinical development as a potent drug-delivery platform.
Collapse
Affiliation(s)
- Anna M Wróblewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewelina Łukawska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zuzanna Wakuła
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Andrei R Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
2
|
Effect of oligosaccharides as lyoprotectants on the stability of curcumin-loaded nanoliposomes during lyophilization. Food Chem 2023; 410:135436. [PMID: 36640657 DOI: 10.1016/j.foodchem.2023.135436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Nanoliposome is a promising delivery system, whereas its commercial application is limited by the structural instability, cargo leakage and particles aggregation during the processing such as freeze-drying. In this study, the effect of four oligosaccharides, fructo-oligosaccharides, lactose, inulin and sucrose (control), on the physicochemical properties, structural stability, and in vitro semi-dynamic digestion behavior of curcumin-loaded nanoliposomes were investigated before and after lyophilization. The results showed that the addition of the oligosaccharides inhibited the changes in particle size and reduced curcumin leakage from lyophilized nanoliposomes. Oligosaccharides significantly improved the physical stability of lyophilized nanoliposomes and delayed curcumin release during in vitro digestion. In addition, oligosaccharides could decrease the hydrophobicity of liposomal membrane and the tightness of phospholipid molecule arrangement, with the increase in micropolarity and fluidity of the bilayer membranes. These results suggested that fructo-oligosaccharides, lactose and inulin could be effective lyoprotectants for lyophilized nanoliposomes.
Collapse
|
3
|
Deng L, Wang Y, Jiang H, Xu X, Han J, Liu W. Specific protection mechanism of oligosaccharides on liposomes during freeze-drying. Food Res Int 2023; 166:112608. [PMID: 36914352 DOI: 10.1016/j.foodres.2023.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Liposomes have been received much attention during the past decades as bioactive compounds carriers in food field. However, the application of liposomes is extremely limited by the structural instability during processing such as freeze-drying. In addition, the protection mechanism of lyoprotectant for liposomes during freeze-drying remains controversial. In this study, lactose, fructooligosaccharide, inulin and sucrose were used as lyoprotectants for liposomes and the physicochemical properties, structural stability and freeze-drying protection mechanism were explored. The addition of oligosaccharides could significantly suppress the changes in size and zeta potential, and the amorphous state of liposomes was negligible changed from XRD. The Tg of the four oligosaccharides, especially for sucrose (69.50 °C) and lactose (95.67 °C), revealed the freeze-dried liposomes had formed vitrification matrix, which could prevent liposomes from fusion via increasing the viscosity and reducing membrane mobility. The decrease in Tm of sucrose (147.67 °C) and lactose (181.67 °C), and the changes in functional group of phospholipid and hygroscopic capacity of lyophilized liposomes indicated oligosaccharides replaced water molecules to interact with phospholipids by hydrogen bonds. It can be concluded that the protection mechanism of sucrose and lactose as lyoprotectant was attributed to the combination of vitrification theory and water replacement hypothesis, while the water replacement hypothesis was dominated by fructooligosaccharide and inulin.
Collapse
Affiliation(s)
- Leiyu Deng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yanping Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Hanyun Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xiankang Xu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Weilin Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
4
|
Kaul L, Grundmann CE, Köll-Weber M, Löffler H, Weiz A, Zannettino ACW, Richter K, Süss R. A Thermosensitive, Chitosan-Based Hydrogel as Delivery System for Antibacterial Liposomes to Surgical Site Infections. Pharmaceutics 2022; 14:pharmaceutics14122841. [PMID: 36559332 PMCID: PMC9784289 DOI: 10.3390/pharmaceutics14122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Prophylaxis and the treatment of surgical site infections (SSIs) with antibiotics frequently fail due to the antibiotic resistance of bacteria and the ability of bacteria to reside in biofilms (i.e., bacterial clusters in a protective matrix). Therefore, alternative antibacterial treatments are required to combat biofilm infections. The combination of diethyldithiocarbamate (DDC-) and copper ions (Cu2+) exhibited antibiofilm activity against the staphylococci species associated with SSIs; however, the formation of a water-insoluble Cu(DDC)2 complex limits its application to SSIs. Here, we describe the development and antibiofilm activity of an injectable gel containing a liposomal formulation of Cu(DDC)2 and Cu2+ (lipogel). Lyophilized liposomes were incorporated into a mixture of chitosan (CS) and beta-glycerophosphate (βGP), and the thermosensitive gelling properties of CS-βGP and the lipogel were determined. The liposomes remained stable after lyophilization over six months at 4-6 °C and -20 °C. The sol-gel transition of the gel and lipogel occurred between 33 and 39 °C, independently of sterilization or storage at -20 °C. CS-βGP is biocompatible and the liposomes were released over time. The lipogel prevented biofilm formation over 2 days and killed 98.7% of the methicillin-resistant Staphylococcus aureus and 99.9% of the Staphylococcus epidermidis biofilms. Therefore, the lipogel is a promising new prophylaxis and treatment strategy for local application to SSIs.
Collapse
Affiliation(s)
- Laurine Kaul
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Rd., Adelaide, SA 5011, Australia
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Correspondence:
| | - Clara E. Grundmann
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany
| | - Monika Köll-Weber
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany
| | - Hanna Löffler
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany
| | - Artur Weiz
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany
| | - Andrew C. W. Zannettino
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
- Central Adelaide Local Health Network, 1 Port Rd., Adelaide, SA 5000, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, 37 Woodville Rd., Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Institute for Photonics and Advanced Sensing, North Terrace Campus, University of Adelaide, Adelaide, SA 5005, Australia
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Int J Mol Sci 2022; 23:ijms232012487. [PMID: 36293340 PMCID: PMC9603853 DOI: 10.3390/ijms232012487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.
Collapse
Affiliation(s)
- George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wang Qian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| |
Collapse
|
6
|
Freeze-drying: A Flourishing Strategy to Fabricate Stable Pharmaceutical and Biological Products. Int J Pharm 2022; 628:122233. [DOI: 10.1016/j.ijpharm.2022.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
7
|
Cao Y, He Z, Chen Q, He X, Su L, Yu W, Zhang M, Yang H, Huang X, Li J. Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization. NANO LETTERS 2022; 22:6580-6589. [PMID: 35969167 DOI: 10.1021/acs.nanolett.2c01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipid nanoparticles (LNPs) carrying therapeutic mRNAs hold great promise in treating lung-associated diseases like viral infections, tumors, and genetic disorders. However, because of their thermodynamically unstable nature, traditional LNPs carrying mRNAs need to be stored at low temperatures, which hinders their prevalence. Herein, an efficient lung-specific mRNA delivery platform named five-element nanoparticles (FNPs) is developed in which helper-polymer poly(β-amino esters) (PBAEs) and DOTAP are used in combination. The new strategy endows FNPs with high stability by increasing the charge repulsion between nanoparticles and the binding force of the aliphatic chains within the nanoparticles. The structure-activity relationship (SAR) shows that PBAEs with E1 end-caps, higher degrees of polymerization, and longer alkyl side chains exhibit higher hit rates. Lyophilized FNP formulations can be stably stored at 4 °C for at least 6 months. Overall, a novel delivery platform with high efficiency, specificity, and stability was developed for advancing mRNA-based therapies for lung-associated diseases.
Collapse
Affiliation(s)
- Yan Cao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zongxing He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qimingxing Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan He
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Su
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenxia Yu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Azlyna ASN, Ahmad S, Husna SMN, Sarmiento ME, Acosta A, Norazmi MN, Mohamud R, Kadir R. Review: Liposomes in the prophylaxis and treatment of infectious diseases. Life Sci 2022; 305:120734. [PMID: 35760094 DOI: 10.1016/j.lfs.2022.120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
Infectious diseases remain as one of the major burdens among health communities as well as in the general public despite the advances in prevention and treatment. Although vaccination and vector eliminations have greatly prevented the transmission of these diseases, the effectiveness of these strategies is no longer guaranteed as new challenges such as drug resistance and toxicity as well as the missing effective therapeutics arise. Hence, the development of new tools to manage these challenges is anticipated, in which nano technology using liposomes as effective nanostructure is highly considered. In this review, we concentrate on the advantages of liposomes in the drug delivery system and the development of vaccine in the treatment of three major infectious diseases; tuberculosis (TB), malaria and HIV.
Collapse
Affiliation(s)
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
9
|
Trenkenschuh E, Richter M, Heinrich E, Koch M, Fuhrmann G, Friess W. Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles. Adv Healthc Mater 2022; 11:e2100538. [PMID: 34310074 PMCID: PMC11468620 DOI: 10.1002/adhm.202100538] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EV) are an emerging technology as immune therapeutics and drug delivery vehicles. However, EVs are usually stored at -80 °C which limits potential clinical applicability. Freeze-drying of EVs striving for long-term stable formulations is therefore studied. The most appropriate formulation parameters are identified in freeze-thawing studies with two different EV types. After a freeze-drying feasibility study, four lyophilized EV formulations are tested for storage stability for up to 6 months. Freeze-thawing studies revealed improved colloidal EV stability in presence of sucrose or potassium phosphate buffer instead of sodium phosphate buffer or phosphate-buffered saline. Less aggregation and/or vesicle fusion occurred at neutral pH compared to slightly acidic or alkaline pH. EVs colloidal stability can be most effectively preserved by addition of low amounts of poloxamer 188. Polyvinyl pyrrolidone failed to preserve EVs upon freeze-drying. Particle size and concentration of EVs are retained over 6 months at 40 °C in lyophilizates containing 10 mm K- or Na-phosphate buffer, 0.02% poloxamer 188, and 5% sucrose. The biological activity of associated beta-glucuronidase is maintained for 1 month, but decreased after 6 months. Here optimized parameters for lyophilization of EVs that contribute to generate long-term stable EV formulations are presented.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| | - Maximilian Richter
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Eilien Heinrich
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbruecken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| |
Collapse
|
10
|
Zeng S, Wang H, Tao L, Ning X, Fan Y, Zhao S, Qin L, Chen X. Decoquinate liposomes: highly effective clearance of Plasmodium parasites causing severe malaria. Malar J 2022; 21:24. [PMID: 35073922 PMCID: PMC8785525 DOI: 10.1186/s12936-022-04042-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background Severe malaria caused by Plasmodium falciparum leads to most malaria-related deaths globally. Decoquinate (DQ) displays strong activity against multistage infection by Plasmodium parasites. However, the development of DQ as an oral dosage form for the treatment of malaria at the blood stage has not been successful. In this study, liposome formulations of DQ were created for intravenous (IV) injection to suppress Plasmodium berghei, a parasite that causes severe malaria in mice. Methods DQ liposomes were prepared by conventional ethanol injection method with slight modifications and encapsulation efficiency evaluated by the well-established centrifugation method. Potency of the DQ liposomes against P. falciparum was assessed in vitro using freshly isolated human red blood cells. The efficacy of the DQ liposomes was examined in the mouse model of severe malaria. Results The DQ liposomes were around 150 nm in size and had the encapsulation efficiency rates > 95%. The freshly prepared and lyophilized liposomes were stable after storage at − 20 °C for 6 months. The liposomes were shown to have excellent activity against P. falciparum in vitro with DQ IC50 0.91 ± 0.05 nM for 3D7 (chloroquine sensitive strain) and DQ IC50 1.33 ± 0.14 nM for Dd2 (multidrug resistant strain), which were 18- and 14-fold more potent than artemisinin, respectively. Mice did not have any signs of toxicity after receiving high dose of the liposomes (DQ 500 mg/kg per mouse) by IV injection. In the mouse model of severe malaria, the liposomes had impressive efficacy against P. berghei with DQ ED50 of 0.720 mg/kg. Conclusion The DQ liposomes prepared in this study were stable for long term storage and safe for IV injection in mammalian animals. The newly created liposome formulations had excellent activity against Plasmodium infection at the blood-stage, which encourages their application in the treatment of severe malaria.
Collapse
Affiliation(s)
- Sumei Zeng
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Hongxing Wang
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China. .,CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China.
| | - Long Tao
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Xiaohui Ning
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Yinzhou Fan
- Guangzhou Bluelight Pharmaceutical Technology Co., Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Siting Zhao
- CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Li Qin
- CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| | - Xiaoping Chen
- CAS Lamvac Biotech Co. Ltd, International Business Incubator, Guangzhou Science Park, Guangzhou, 510663, China
| |
Collapse
|
11
|
Wang X, Li X, Duffy P, McMahon S, Wang X, Lyu J, Xu Q, A S, Chen NN, Bi V, Dürig T, Wang W. Resveratrol‐Loaded Poly(
d
,
l
‐Lactide‐
Co
‐Glycolide) Microspheres Integrated in a Hyaluronic Acid Injectable Hydrogel for Cartilage Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xi Wang
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Xiaolin Li
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Patrick Duffy
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Sean McMahon
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Jing Lyu
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Qian Xu
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Sigen A
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Ningyi N. Chen
- Pharmaceutical R&D Ashland Specialty Ingredients G.P. 500 Hercules Road, 8136A/260 Wilmington DE 19808 USA
| | - Vivian Bi
- Pharmaceutical R&D Ashland Specialty Ingredients G.P. 500 Hercules Road, 8136A/260 Wilmington DE 19808 USA
| | - Thomas Dürig
- Pharmaceutical R&D Ashland Specialty Ingredients G.P. 500 Hercules Road, 8136A/260 Wilmington DE 19808 USA
| | - Wenxin Wang
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| |
Collapse
|
12
|
Gao X, Gong J, Cai Y, Wang J, Wen J, Peng L, Ji H, Jiang S, Guo D. Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine. Int J Biol Macromol 2021; 188:855-862. [PMID: 34411614 DOI: 10.1016/j.ijbiomac.2021.08.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
As immune adjuvants assisting vaccines, nanoparticle delivery systems have been widely exploited. Squalene, the major ingredient of approved adjuvant MF59, has great potential in activating immune responses. In the current study, model antigen ovalbumin (OVA) was encapsulated into squalene-based nanostructured lipid carriers (NLCs), and the chitosan, a cationic polysaccharide, was used for modifying nanoparticles to develop a functionalized and cationic nanoparticle delivery system (OVA-csNLCs). Firstly, the optimal formulation of csNLCs was successfully screened out, and had hydrodynamic diameter of 235.80 ± 5.99 nm and zeta potential of 34.90 ± 6.95 mV. Then, the generated OVA-csNLCs had no significant difference in hydrodynamic diameter and exhibited lower zeta potential of 19.03 ± 0.31 mV and high encapsulation efficiency of 83.4%. Sucrose (10%, w/w) was selected as optimal lyoprotectant, exhibiting good stability of OVA-csNLCs in the form of freeze-dried powder. More importantly, the OVA-csNLCs effectively promoted OVA antigen uptake by macrophage, significantly enhanced the level of OVA-specific IgG, and induced a Th2-based immune response in vivo. Furthermore, mice immunization experiment demonstrated that OVA-csNLCs had well biocompatibility and facilitated spleen lymphocytes proliferation. Above findings indicate that chitosan modified squalene nanostructured lipid carriers show promise as antigen delivery system and an open adjuvant platform.
Collapse
Affiliation(s)
- Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ying Cai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China
| | - Jia Wen
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lin Peng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Ji
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
13
|
The Physicochemical, Biopharmaceutical, and In Vitro Efficacy Properties of Freeze-Dried Dexamethasone-Loaded Lipomers. Pharmaceutics 2021; 13:pharmaceutics13081322. [PMID: 34452283 PMCID: PMC8401638 DOI: 10.3390/pharmaceutics13081322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Dexamethasone-loaded polymer hybrid nanoparticles were developed as a potential tool to treat alopecia areata due to their follicular targeting ability. Freeze drying (FD) is a common technique used to improve nanoparticle stability; however, there are few studies focused on its effect on ethyl cellulose lipid-core nanoparticles. Nanoparticles were lyophilized with different cryoprotectants. Sucrose was selected because it allowed for a good resuspension and provided acceptable physicochemical parameters (374.33 nm, +34.7 mV, polydispersion 0.229%, and 98.87% encapsulation efficiency). The nanoparticles obtained were loaded into a pleasant xanthan gum hydrogel, and the rheological, release, and skin permeation profiles of different formulations were studied. The FD formulation significantly modified the particle size, and the drug release and permeation properties were also altered. In addition, analyses of the cytotoxicity and anti-inflammatory efficacy of FD and non-FD particles on human keratinocytes indicated no differences.
Collapse
|
14
|
Zawilska P, Machowska M, Wisniewski K, Grynkiewicz G, Hrynyk R, Rzepecki R, Gubernator J. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur J Pharm Sci 2021; 163:105838. [PMID: 33845119 DOI: 10.1016/j.ejps.2021.105838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
The taxanes are commonly used in the treatment of many types of cancer. The disadvantages of using taxanes in therapy are their low solubility in water, the toxicity or relatively poor pharmacokinetics of existing formulations. Using liposomes as carriers would help in overcoming these problems, however, their use is limited by the low incorporation efficiency of taxane molecules within bilayer and by subsequent drug crystallization. Most of published taxanes liposomal formulations use natural soy phosphatidylcholine (PC) as main liposomes lipid. This allows a relatively good drug retention during the liposomes storage, but on the other hand, the use of liposomes with more liquid bilayer facilitates fast drug release after its intravenous administration. In order to decrease the drug release from liposomes in circulation, we used pegylated HSPC (hydrogenated soy PC) liposomes containing a novel synthetic 3-n-pentadecylphenol derivative - KW101, that showed a remarkably stabilizing action for the docetaxel (DTX) dopped HSPC liposomes over 30 days, expressed by the inhibition of DTX crystallization. The resulting liposomes with DTX showed similar cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines and higher toxicity in drug-resistant NCI/ADR-RES cell line in comparison with the free DTX. Moreover, this formulation has good pharmacokinetics in mice, in comparison to control pegylated DTX formulation composed of egg phosphatidylcholine (ePC). This novel liposomal formulation of docetaxel consisting of HSPC with the stabilizing compound KW101, appears to be a promising carrier for DTX cancer therapy.
Collapse
Affiliation(s)
- Patrycja Zawilska
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | | | | | - Rafal Hrynyk
- 3M Poland, Aleja Katowicka 117, 05-830 Nadarzyn, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jerzy Gubernator
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
15
|
Almalki M, Lai EP, Ko R, Li C. Facile preparation of liposome-encapsulated Zn–DTPA from soy lecithin for decorporation of radioactive actinides. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diethylenetriaminepentaacetic acid (DTPA) is an attractive decorporation agent that can enhance the excretion of radioactive actinides such as plutonium, americium, and curium after a radiological incident. However, DTPA is excreted in a short period of time after administration. Several formulations have been developed to improve DTPA pharmacokinetics properties. In this project, liposomes were prepared facilely from soy lecithin as a nanocarrier for pulmonary delivery of Zn–DTPA. Lipid hydration, reverse phase evaporation, and mechanical sonication were three methods evaluated for the preparation of liposome-encapsulated Zn-DTPA (lipo-Zn-DTPA). Mechanical sonication was the method of choice due to simple apparatus and facile preparation. Lipo-Zn–DTPA exhibited a hydrodynamic diameter of 178 ± 2 nm and a spherical shape. The loading capacity and encapsulation efficiency of Zn–DTPA were 41 ± 5 mg/g and 10% ± 1%, respectively. Lyophilization of lipo-Zn–DTPA for extended storage did not affect the amount of encapsulated drug or damage the structure of liposomes. An in vivo cytotoxicity test confirmed no serious adverse effect of Zn–DTPA encapsulated lecithin liposomes in rats.
Collapse
Affiliation(s)
- Manal Almalki
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Edward P.C. Lai
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Raymond Ko
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
16
|
Enhancing the preservation of liposomes: The role of cryoprotectants, lipid formulations and freezing approaches. Cryobiology 2021; 98:46-56. [PMID: 33400962 DOI: 10.1016/j.cryobiol.2020.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023]
Abstract
In the last decades, liposomes acquired a striking success in the biomedical field thanks to their biocompatibility and drug delivery ability. Many liposomal drug formulations have been already approved by the Food and Drug Administration (FDA) and used for the treatment of a wide range of pathologies with or without further engineering. Their clinical application requires strict compliance with high standard quality rules, and it is crucial to employ storage methods that do not affect the integrity of the vesicles and preventing the leakage of their cargo. In this work, the design of a suitable formulation for freeze-drying had been investigated for two different liposomes, DOPC-DOTAP and the PEGylated counterpart, DOPC-DOTAP-DSPE-PEG. The role of various cryoprotectants was evaluated paying attention to their ability to preserve the structural integrity of liposomes. At first, the study was focused on freezing and two methodologies were investigated, quenching in liquid nitrogen and shelf-ramped freezing. This analysis showed that the disaccharides (cellobiose, glucose, lactose, sucrose, and trehalose) and the polyol (mannitol) protected successfully the integrity of liposomes, while during the process, in the presence of a surfactant, liposomes were strongly damaged and fragmented by the ice crystals. Furthermore, the choice of the rate of freezing depended on the different compositions of the lipid bilayer. Finally, the effects of lyophilization on liposomes with and without additives were studied; cellobiose, lactose and trehalose showed encouraging results for the maintenance of the morpho-functional parameters of liposomes during the entire freeze-drying process.
Collapse
|
17
|
Quijia CR, Bonatto CC, Silva LP, Andrade MA, Azevedo CS, Lasse Silva C, Vega M, de Santana JM, Bastos IMD, Carneiro MLB. Liposomes Composed by Membrane Lipid Extracts from Macrophage Cell Line as a Delivery of the Trypanocidal N, N'-Squaramide 17 towards Trypanosoma cruzi. MATERIALS 2020; 13:ma13235505. [PMID: 33276688 PMCID: PMC7730638 DOI: 10.3390/ma13235505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Chagas is a neglected tropical disease caused by Trypanosoma cruzi, and affects about 25 million people worldwide. N, N’-Squaramide 17 (S) is a trypanocidal compound with relevant in vivo effectiveness. Here, we produced, characterized, and evaluated cytotoxic and trypanocidal effects of macrophage-mimetic liposomes from lipids extracted of RAW 264.7 cells to release S. As results, the average hydrodynamic diameter and Zeta potential of mimetic lipid membranes containing S (MLS) was 196.5 ± 11 nm and −61.43 ± 2.3 mV, respectively. Drug entrapment efficiency was 73.35% ± 2.05%. After a 72 h treatment, MLS was observed to be active against epimastigotes in vitro (IC50 = 15.85 ± 4.82 μM) and intracellular amastigotes (IC50 = 24.92 ± 4.80 μM). Also, it induced low cytotoxicity with CC50 of 1199.50 ± 1.22 μM towards VERO cells and of 1973.97 ± 5.98 μM in RAW 264.7. MLS also induced fissures in parasite membrane with a diameter of approximately 200 nm in epimastigotes. MLS showed low cytotoxicity in mammalian cells and high trypanocidal activity revealing this nanostructure a promising candidate for the development of Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Rafael Quijia
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Cínthia Caetano Bonatto
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Luciano Paulino Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Milene Aparecida Andrade
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Clenia Santos Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Camila Lasse Silva
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Manel Vega
- Department of Chemistry, University of the Balearic Islands, Palma on the Island of Majorca, Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain;
| | - Jaime Martins de Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| | - Marcella Lemos Brettas Carneiro
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| |
Collapse
|
18
|
Soni NK, Sonali LJ, Singh A, Mangla B, Neupane YR, Kohli K. Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. NANOTECHNOLOGY 2020; 31:475101. [PMID: 32886644 DOI: 10.1088/1361-6528/abaf81] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanotherapeutics in cancer treatment are dominating global science and research, and have been recognized as the pioneering medical care regimen. Raloxifene (RLN) has been used for its anti-proliferative action on mammary tissue, however, it suffers from poor oral bioavailability. This investigation gives an account of the design and development of RLN-loaded nanostructured lipid carriers (RLN-NLCs) using a simple and scalable ultrasonication method for improved oral efficacy and limited offsite toxicity using Compritol® 888 ATO as a solid lipid and Transcutol® HP as a liquid lipid. In addition, the optimized RLN-NLCs were in the nanometric range (121 nm) with high % entrapment efficiency (%EE) (81%) for RLN, and were further freeze-dried in the presence of mannitol to enhance the stability of RLN-NLCs in the dry state for long-term use. Morphological observation under a transmission electron microscope and scanning electron microscope revealed the spherical smooth surface nanometric size of RLN-NLCs. Powder x-ray diffraction confirmed the encapsulation of RLN into the RLN-NLC's matrix with reduced crystallinity of the drug. The in vitro release study showed a burst release for an initial 4 h, and sustained release for up to 24 h. Furthermore, the RLN-NLCs showed higher cytotoxicity towards MCF-7 cells in vitro in comparison to RLN suspension, and an ex vivo intestinal permeation study demonstrated improved intestinal permeability of RLN-NLCs. Moreover, the in vivo pharmacokinetic study in female Wistar rats showed a 4.79-fold increment in oral bioavailability of RLN from RLN-NLCs compared to RLN suspension. Taken together, our results pave the way for a new nanotherapeutic approach towards breast cancer treatment.
Collapse
Affiliation(s)
- Nimrit Kaur Soni
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | | | | | | | | | | |
Collapse
|
19
|
Mabrouk MT, Huang WC, Deng B, Li-Purcell N, Seffouh A, Ortega J, Ekin Atilla-Gokcumen G, Long CA, Miura K, Lovell JF. Lyophilized, antigen-bound liposomes with reduced MPLA and enhanced thermostability. Int J Pharm 2020; 589:119843. [PMID: 32890653 DOI: 10.1016/j.ijpharm.2020.119843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022]
Abstract
Thermostability and decreased component costs are desirable features for adjuvanted, recombinant vaccines. We previously showed that a model malaria transmission-blocking vaccine candidate antigen, Pfs25, can be rendered more immunogenic when mixed with liposomes containing cobalt porphyrin-phospholipid (CoPoP) and a synthetic monophosphoryl lipid A (MPLA) variant. CoPoP can induce stable particle formation of recombinant antigens based on interaction with their polyhistidine tag. In the present work, different synthetic MPLA variants and concentrations were assessed in CoPoP liposomes. Long-term biophysical stability and immunogenicity were not adversely impacted by a 60% reduction in MPLA content. When admixed with Pfs25, the adjuvant formulations effectively induced functional antibodies in immunized mice and rabbits. Lyophilized, antigen-bound liposomes were formed using sucrose and trehalose cryoprotectants, which improved vaccine reconstitution for a variety of model antigens. Compared to liquid storage, the lyophilized Pfs25 and CoPoP liposomes exhibited thermostability with respect to size, biochemical integrity, binding capacity, protein folding and immunogenicity. Following 6 weeks of storage at 60 °C, the most extended storage period assessed, the lyophilized formulation induced functional antibodies in mice with immunization.
Collapse
Affiliation(s)
- Moustafa T Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Nasi Li-Purcell
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A 0C7, Canada
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
20
|
Khan A, Aljarbou AN, Aldebasi YH, Allemailem KS, Alsahli MA, Khan S, Alruwetei AM, Khan MA. Fatty Acid Synthase (FASN) siRNA-Encapsulated-Her-2 Targeted Fab'-Immunoliposomes for Gene Silencing in Breast Cancer Cells. Int J Nanomedicine 2020; 15:5575-5589. [PMID: 32801705 PMCID: PMC7415462 DOI: 10.2147/ijn.s256022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The overexpression of Her-2 in 25–30% breast cancer cases and the crosstalk between Her-2 and fatty acid synthase (FASN) establishes Her-2 as a promising target for site-directed delivery. The present study aimed to develop the novel lipid base formulations to target and inhibit the cellular proliferation of Her-2-expressing breast cancer cells through the silencing of FASN. In order to achieve this goal, we prepared DSPC/Chol and DOPE/CHEMS immunoliposomes, conjugated with the anti-Her-2 fab’ and encapsulated FASN siRNA against breast cancer cells. Methods We evaluated the size, stability, cellular uptake and internalization of various formulations of liposomes. The antiproliferative gene silencing potential was investigated by the cell cytotoxicity, crystal violet, wound healing and Western blot analyses in Her-2+ and Her-2¯ breast cancer cells. Results The data revealed that both nanosized FASN-siRNA-encapsulated liposomes showed significantly higher cellular uptake and internalization with enhanced stability. The cell viability of Her-2+ SK-BR3 cells treated with the targeted formulation of DSPC/Chol- and DOPE/CHEMS-encapsulating FASN-siRNA reduced to 30% and 20%, respectively, whereas it was found to be 45% and 36% in MCF-7 cells. The wounds were not only failed to close but they became broader in Her-2+ cells treated with targeted liposomes of siRNA. Consequently, the amount of FASN decreased by 80% in SK-BR3 cells treated with non-targeted liposomes and it was 30% and 60% in the MCF-7 cells treated with DSPC/Chol and DOPE/CHEMS liposomes, respectively. Conclusion In this study, we developed the formulation that targeted Her-2 for the suppression of FASN and, therefore, inhibited the proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Ahmed N Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Shamshir Khan
- Dentistry and Pharmacy College, Buraydah Private Colleges, Al-Qassim, Buraydah, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| |
Collapse
|
21
|
Lyophilized Iron Oxide Nanoparticles Encapsulated in Amphotericin B: A Novel Targeted Nano Drug Delivery System for the Treatment of Systemic Fungal Infections. Pharmaceutics 2020; 12:pharmaceutics12030247. [PMID: 32164159 PMCID: PMC7150906 DOI: 10.3390/pharmaceutics12030247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023] Open
Abstract
We formulated and tested a targeted nanodrug delivery system to help treat life-threatening invasive fungal infections, such as cryptococcal meningitis. Various designs of iron oxide nanoparticles (IONP) (34–40 nm) coated with bovine serum albumin and coated and targeted with amphotericin B (AMB-IONP), were formulated by applying a layer-by-layer approach. The nanoparticles were monodispersed and spherical in shape, and the lead formulation was found to be in an optimum range for nanomedicine with size (≤36 nm), zeta potential (−20 mV), and poly dispersity index (≤0.2), and the drug loading was 13.6 ± 6.9 µg of AMB/mg of IONP. The drug release profile indicated a burst release of up to 3 h, followed by a sustained drug release of up to 72 h. The lead showed a time-dependent cellular uptake in C. albicans and C. glabrata clinical isolates, and exhibited an improved efficacy (16–25-fold) over a marketed conventional AMB-deoxycholate product in susceptibility testing. Intracellular trafficking of AMB-IONP by TEM and confocal laser scanning microscopy confirmed the successful delivery of the AMB payload at and/or inside the fungal cells leading to potential therapeutic advantages over the AMB-deoxycholate product. A short-term stability study at 5 °C and 25 °C for up to two months showed that the lyophilized form was stable.
Collapse
|
22
|
Guimarães D, Noro J, Silva C, Cavaco-Paulo A, Nogueira E. Protective Effect of Saccharides on Freeze-Dried Liposomes Encapsulating Drugs. Front Bioeng Biotechnol 2019; 7:424. [PMID: 31921827 PMCID: PMC6927910 DOI: 10.3389/fbioe.2019.00424] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
The production of freeze-dried liposomes encapsulating drugs is considered a key challenge since the drugs are prone to leakage. The aim of this work was to study the effect of different saccharides on preserving the stability and drug retention capacity of a previously developed liposomal formulation, when subjected to a freeze-drying process. The protective role of trehalose, lactose, glucose, mannitol and sucrose, known for their cryo/lyoprotective effect, was tested by addition of different concentrations to liposomes. Sucrose, in a concentration dependent manner (8:1 sugar:lipids mass ratio) proved to be a suitable cryo/lyoprotectant of these liposomes. Effectively, this saccharide prevents the fusion or/and aggregation of the liposomal formulation, protecting the integrity of the freeze-dried empty liposomes. The liposomal formulation containing sucrose was studied in terms of morphology, concentration, and anticancer drugs retention ability. The study involved two drugs encapsulated in the aqueous core, methotrexate (MTX) and doxorubicin (DOX), and one drug located in the lipid bilayer, tamoxifen (TAM). After the freeze-drying process, liposomes with sucrose encapsulating drugs revealed high physical stability, maintaining their narrow and monodisperse character, however high leakage of the drugs encapsulated in the aqueous core was observed. Otherwise, no significant drug leakage was detected on liposomes containing the TAM, which maintained its biological activity after the freeze-drying process. These findings reveal that sucrose is a good candidate for the cryo/lyoprotection of liposomes with drugs located in the lipid bilayer.
Collapse
Affiliation(s)
- Diana Guimarães
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Eugénia Nogueira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
23
|
Zhai J, Li Q, Xu H, Su T, Wang YE, Huang W, Ma Y, Guan S. An Aseptic One-Shot Bottom-Up Method To Produce Progesterone Nanocrystals: Controlled Size and Improved Bioavailability. Mol Pharm 2019; 16:5076-5084. [PMID: 31670968 DOI: 10.1021/acs.molpharmaceut.9b01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Progesterone (PG) is an essential sex hormone with a variety of important biological functions, but its insolubility leads to low bioavailability of most water-based formulations. What is more, the commercial oil-based formulations often cause severe side effects after long-term injection due to poor tissue absorption of oil. Herein, we report an aseptic bottom-up method utilizing emulsion freeze-drying technology that produces size-controllable, highly bioavailable, and water-based PG nanocrystal injection. The key factors that can determine the features of nanocrystals were investigated, including solvents, water-to-oil ratio, drug concentrations, type of surfactants, temperature in freeze-drying process, and lyoprotectants. Mechanisms of crystal growth formation process for PG nanocrystals were also analyzed theoretically. The prepared water-based PG nanocrystal suspension injection (PG/NSI) not only showed quick dissolution behaviors but also had significantly improved bioavailability in vivo. Therefore, this method can effectively control the size of nanocrystals, enhance bioavailability of insoluble drugs, and produce aseptic water-based nanocrystals that can be directly used for injection. Moreover, this method can also be used to prepare nanocrystals with the desired size under aseptic conditions for other poorly water-soluble drugs.
Collapse
Affiliation(s)
- Junqiu Zhai
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| | - Qingguo Li
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| | - Huahua Xu
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| | - Tiantian Su
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| | - Yu-E Wang
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| | - Wenhai Huang
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| | - Yan Ma
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| | - Shixia Guan
- School of Pharmaceutical Sciences , Guangzhou University of Chinese Medicine , No. 232, Waihuan East Road , Guangzhou 510006 , China
| |
Collapse
|
24
|
Pauli G, Tang WL, Li SD. Development and Characterization of the Solvent-Assisted Active Loading Technology (SALT) for Liposomal Loading of Poorly Water-Soluble Compounds. Pharmaceutics 2019; 11:E465. [PMID: 31505795 PMCID: PMC6781273 DOI: 10.3390/pharmaceutics11090465] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022] Open
Abstract
A large proportion of pharmaceutical compounds exhibit poor water solubility, impacting their delivery. These compounds can be passively encapsulated in the lipid bilayer of liposomes to improve their water solubility, but the loading capacity and stability are poor, leading to burst drug leakage. The solvent-assisted active loading technology (SALT) was developed to promote active loading of poorly soluble drugs in the liposomal core to improve the encapsulation efficiency and formulation stability. By adding a small volume (~5 vol%) of a water miscible solvent to the liposomal loading mixture, we achieved complete, rapid loading of a range of poorly soluble compounds and attained a high drug-to-lipid ratio with stable drug retention. This led to improvements in the circulation half-life, tolerability, and efficacy profiles. In this mini-review, we summarize our results from three studies demonstrating that SALT is a robust and versatile platform to improve active loading of poorly water-soluble compounds. We have validated SALT as a tool for improving drug solubility, liposomal loading efficiency and retention, stability, palatability, and pharmacokinetics (PK), while retaining the ability of the compounds to exert pharmacological effects.
Collapse
Affiliation(s)
- Griffin Pauli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Wei-Lun Tang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
25
|
He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019; 9:36-48. [PMID: 30766776 PMCID: PMC6362257 DOI: 10.1016/j.apsb.2018.06.005] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023] Open
Abstract
Liposomes mimic natural cell membranes and have long been investigated as drug carriers due to excellent entrapment capacity, biocompatibility and safety. Despite the success of parenteral liposomes, oral delivery of liposomes is impeded by various barriers such as instability in the gastrointestinal tract, difficulties in crossing biomembranes, and mass production problems. By modulating the compositions of the lipid bilayers and adding polymers or ligands, both the stability and permeability of liposomes can be greatly improved for oral drug delivery. This review provides an overview of the challenges and current approaches toward the oral delivery of liposomes.
Collapse
Key Words
- APC, antigen-presenting cell
- AUC, area under curve
- Absorption
- BSA, bovine serum albumin
- Bioavailability
- DC, dendritic cells
- DMPC, dimyristoyl phosphatidyl choline
- DPPC, dipalmitoyl phosphotidylcholine
- Drug delivery
- FAE, follicle-associated epithelia
- FITC, fluorescein isothiocyannate
- GIT, gastrointestinal tract
- LUV, large unilamellar vesicles
- Liposomes
- MLV, multilamellar vesicles
- MRT, mean residence time
- MVL, multivesicular liposomes
- Oral
- PC, phosphatidylcholine
- PEG, polyethylene glycol
- RES, reticulo-endothelial
- SC, sodium cholate
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SPC, soy phosphatidylcholine
- STC, sodium taurocholate
- SUV, small unilamellar vesicles
- Stability
- TPGS, tocopherol polyethylene glycol succinate
- Tgel, gelling temperature
- Tp, phase transition temperature
- UEA 1, ulex europaeus agglutinin 1
- WGA, wheat germ agglutinin
- rhEGF, recombinant human epithelial growth factor
Collapse
Affiliation(s)
- Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Dermatology Hospital, Shanghai 200443, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Dermatology Hospital, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Dermatology Hospital, Shanghai 200443, China
| | | | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Dermatology Hospital, Shanghai 200443, China
| |
Collapse
|
26
|
Jarrar QB, Hakim MN, Cheema MS, Zakaria ZA. In vitro characterization and in vivo performance of mefenamic acid-sodium diethyldithiocarbamate based liposomes. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000117870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Franzé S, Selmin F, Samaritani E, Minghetti P, Cilurzo F. Lyophilization of Liposomal Formulations: Still Necessary, Still Challenging. Pharmaceutics 2018; 10:E139. [PMID: 30154315 PMCID: PMC6161153 DOI: 10.3390/pharmaceutics10030139] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023] Open
Abstract
Nowadays, the freeze-drying of liposome dispersions is still necessary to provide a solid dosage form intended for different routes of administration (i.e., parenteral, oral, nasal and/or pulmonary). However, after decades of studies the optimization of process conditions remains still challenging since the freezing and the dehydration destabilize the vesicle organization with the concomitant drug leakage. Starting from the thermal properties of phospholipids, this work reviews the main formulation and process parameters which can guarantee a product with suitable characteristics and increase the efficiency of the manufacturing process. In particular, an overview of the cryo- and/or lyo-protective mechanisms of several excipients and the possible use of co-solvent mixtures is provided. Attention is also focused on the imaging methods recently proposed to characterize the appearance of freeze-dried products and liposome dispersions upon reconstitution. The combination of such data would allow a better knowledge of the factors causing inter-vials variability in the attempt to improve the quality of the final medicinal product.
Collapse
Affiliation(s)
- Silvia Franzé
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Elena Samaritani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G. Colombo 71, Milano 20133, Italy.
| |
Collapse
|
28
|
Farías ME, Alejandra Luna M, Niebylski AM, Mariano Correa N, Molina PG. Characterization of a label system formed by large unilamellar vesicles for its potential use in the design of electrochemical biosensors. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C. Hydroxypropyl-ß-cyclodextrin as a membrane protectant during freeze-drying of hydrogenated and non-hydrogenated liposomes and molecule-in-cyclodextrin-in- liposomes: Application to trans-anethole. Food Chem 2017; 267:67-74. [PMID: 29934191 DOI: 10.1016/j.foodchem.2017.10.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
The effect of hydrogenation of phospholipids on the characteristics of freeze-dried liposomes was investigated using hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as membrane protectant. The ethanol-injection method was applied to prepare liposomes using hydrogenated (Phospholopion-90H and 80H) and non-hydrogenated phospholipids (Lipoid-S100) in combination with cholesterol. Various liposomal formulations were tested: conventional liposomes (CL) and HP-ß-CD-loaded liposomes (CDL). Liposome suspensions were concentrated by ultracentrifugation; the pellets were reconstituted in water or CD solution and the dispersions were characterized for their size, polydispersity index and zeta potential. Results demonstrated that HP-ß-CD protected only the hydrogenated batches (CL and CDL) during freeze-drying. Moreover, the presence of HP-ß-CD in the aqueous phase of CDL protected them during freeze-drying. Freeze-dried CL and CDL made of phospholipon-90H loading anethole were demonstrated to be physically stable upon reconstitution in HP-ß-CD solutions, and are able to retain anethole after 6 months of storage at 4 °C thereby making them valuable for food applications.
Collapse
Affiliation(s)
- Riham Gharib
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Doctoral School of Sciences and Technologies, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon 1, UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Doctoral School of Sciences and Technologies, Lebanese University, Lebanon.
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France.
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon 1, UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France.
| |
Collapse
|
30
|
Tang WL, Tang WH, Chen WC, Diako C, Ross CF, Li SD. Development of a Rapidly Dissolvable Oral Pediatric Formulation for Mefloquine Using Liposomes. Mol Pharm 2017; 14:1969-1979. [DOI: 10.1021/acs.molpharmaceut.7b00077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei-Lun Tang
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Wei-Hsin Tang
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Weihsu Claire Chen
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Charles Diako
- School
of Food Science, Washington State University, Pullman, Washington 99164, United States
| | - Carolyn F. Ross
- School
of Food Science, Washington State University, Pullman, Washington 99164, United States
| | - Shyh-Dar Li
- Faculty
of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
31
|
Su Y, Hu J, Huang Z, Huang Y, Peng B, Xie N, Liu H. Paclitaxel-loaded star-shaped copolymer nanoparticles for enhanced malignant melanoma chemotherapy against multidrug resistance. Drug Des Devel Ther 2017; 11:659-668. [PMID: 28293102 PMCID: PMC5345981 DOI: 10.2147/dddt.s127328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma (MM) is the most dangerous type of skin cancer with annually increasing incidence and death rates. However, chemotherapy for MM is restricted by low topical drug concentration and multidrug resistance. In order to surmount the limitation and to enhance the therapeutic effect on MM, a new nanoformulation of paclitaxel (PTX)-loaded cholic acid (CA)-functionalized star-shaped poly(lactide-co-glycolide) (PLGA)-D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoparticles (NPs) (shortly PTX-loaded CA-PLGA-TPGS NPs) was fabricated by a modified method of nanoprecipitation. The particle size, zeta potential, morphology, drug release profile, drug encapsulation efficiency, and loading content of PTX-loaded NPs were detected. As shown by confocal laser scanning, NPs loaded with coumarin-6 were internalized by human melanoma cell line A875. The cellular uptake efficiency of CA-PLGA-TPGS NPs was higher than those of PLGA NPs and PLGA-TPGS NPs. The antitumor effects of PTX-loaded NPs were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that star-shaped PTX-loaded CA-PLGA-TPGS NPs were significantly superior to commercial PTX formulation Taxol®. Such drug delivery nanocarriers are potentially applicable to the improvement of clinical MM therapy.
Collapse
Affiliation(s)
- Yongsheng Su
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Jian Hu
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Zhibin Huang
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Yubin Huang
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Bingsheng Peng
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Ni Xie
- Core Laboratory, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Hui Liu
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| |
Collapse
|
32
|
|
33
|
Hong SS, Choi JY, Kim JO, Lee MK, Kim SH, Lim SJ. Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int J Nanomedicine 2016; 11:4465-4477. [PMID: 27660440 PMCID: PMC5019274 DOI: 10.2147/ijn.s113723] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies have highlighted the challenge of developing injectable liposomes as a paclitaxel (PTX) carrier, a challenge attributable to the limitations in liposomal stability caused by PTX loading. Poor stability of PTX-loaded liposomes is caused by PTX-triggered aggregation or fusion of liposomal membranes and is exacerbated in the presence of PEGylated lipid. In the present study, the effect of triglyceride incorporation on the stability of PTX-loaded/PEGylated liposomes was explored. Incorporation of a medium chain triglyceride Captex 300 into saturated phosphatidylcholine (PC)-based liposomes (1,2-dimyristoyl-sn-glycero-3-phosphocholine [DMPC]:cholesterol [CHOL]:N-(Carbonyl-methoxypolyethyleneglycol 2000)-1, 2-distearoyl-sn-glycero-3-phospho-ethanolamine [PE-PEG]), produced a fine, homogeneous, and membrane-filterable PTX-loaded liposomes fulfilling the requirement of an injectable lipid formulation. Triglyceride incorporation also greatly inhibited the time-dependent leakage of PTX from saturated PC-based liposomes, which appears to be mediated by the inhibition of liposome fusion. In contrast, triglyceride incorporation induced the destabilization and PTX leakage of unsaturated PC-based liposomes, indicating the opposite effect of triglyceride depending on the fluidity status of PC constituting the liposomal membrane. PTX release profile and the in vitro and in vivo anticancer efficacy of triglyceride-incorporated DMPC:CHOL:PE-PEG liposomes were similar to Taxol® while the toxicity of liposomal PTX was significantly lower than that of Taxol. Taken together, triglyceride incorporation provided an injectable PTX formulation by functioning as a formulation stabilizer of PEGylated/saturated PC-based liposomes.
Collapse
Affiliation(s)
- Soon-Seok Hong
- Department of Bioscience and Bioengineering, Sejong University, Seoul
| | - Ju Yeon Choi
- College of Pharmacy, Yeungnam University, Gyeongsan
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan
| | - Mi-Kyung Lee
- College of Pharmacy, Woosuk University, Wanju-gun, Jeollabuk-do
| | - So Hee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Bioengineering, Sejong University, Seoul
| |
Collapse
|