1
|
Bisht A, Avinash D, Sahu KK, Patel P, Das Gupta G, Kurmi BD. A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv Transl Res 2025; 15:102-133. [PMID: 38884850 DOI: 10.1007/s13346-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Doxorubicin is a key treatment for breast cancer, but its effectiveness often comes with significant side effects. Its actions include DNA intercalation, topoisomerase II inhibition, and reactive oxygen species generation, leading to DNA damage and cell death. However, it can also cause heart problems and low blood cell counts. Current trials aim to improve doxorubicin therapy by adjusting doses, using different administration methods, and combining it with targeted treatments or immunotherapy. Nanoformulations show promise in enhancing doxorubicin's effectiveness by improving drug delivery, reducing side effects, and overcoming drug resistance. This review summarizes recent progress and difficulties in using doxorubicin for breast cancer, highlighting its mechanisms, side effects, ongoing trials, and the potential impact of nanoformulations. Understanding these different aspects is crucial in optimizing doxorubicin's use and improving outcomes for breast cancer patients. This review examines the toxicity of doxorubicin, a drug used in breast cancer treatment, and discusses strategies to mitigate adverse effects, such as cardioprotective agents and liposomal formulations. It also discusses clinical trials evaluating doxorubicin-based regimens, the evolving landscape of combination therapies, and the potential of nanoformulations to optimize delivery and reduce systemic toxicity. The review also discusses the potential of liposomes, nanoparticles, and polymeric micelles to enhance drug accumulation within tumor tissues while sparing healthy organs.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Dubey Avinash
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Chaumuhan, Mathura, 281406, UP, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Pandey P, Arya DK, Deepak P, Ali D, Alarifi S, Srivastava S, Lavasanifar A, Rajinikanth PS. αvβ3 Integrin and Folate-Targeted pH-Sensitive Liposomes with Dual Ligand Modification for Metastatic Breast Cancer Treatment. Bioengineering (Basel) 2024; 11:800. [PMID: 39199757 PMCID: PMC11352135 DOI: 10.3390/bioengineering11080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes to deliver drugs effectively. pH-responsive liposomes that are internalized through endocytosis encounter mildly acidic pH in the endosomes and thereafter fuse or destabilize the endosomal membrane, leading to subsequent cargo release into the cytoplasm. The extracellular tumor matrix also presents a slightly acidic environment that can lead to the enhanced drug release and improved targeting capabilities of the nano-delivery system. Recent studies have shown that folic acid (FA) and iRGD-coated nanocarriers, including pH-sensitive liposomes, can preferentially accumulate and deliver drugs to breast tumors that overexpress folate receptors and αvβ3 and αvβ5 integrins. This study focuses on the development and characterization of 5-Fluorouracil (5-FU)-loaded FA and iRGD surface-modified pHLips (FA-iRGD-5-FU-pHLips). The novelty of this research lies in the dual targeting mechanism utilizing FA and iRGD peptides, combined with the pH-sensitive properties of the liposomes, to enhance selective targeting and uptake by cancer cells and effective drug release in the acidic tumor environment. The prepared liposomes were small, with an average diameter of 152 ± 3.27 nm, uniform, and unilamellar, demonstrating efficient 5-FU encapsulation (93.1 ± 2.58%). Despite surface functionalization, the liposomes maintained their pH sensitivity and a neutral zeta potential, which also conferred stability and reduced aggregation. Effective pH responsiveness was demonstrated by the observation of enhanced drug release at pH 5.5 compared to physiological pH 7.4. (84.47% versus 46.41% release at pH 5.5 versus pH 7.4, respectively, in 72 h). The formulations exhibited stability for six months and were stable when subjected to simulated biological settings. Blood compatibility and cytotoxicity studies on MDA-MB-231 and SK-BR3 breast cancer cell lines revealed an enhanced cytotoxicity of the liposomal formulation that was modified with FA and iRGD compared to free 5-FU and minimal hemolysis. Collectively, these findings support the potential of FA and iRGD surface-camouflaged, pH-sensitive liposomes as a promising drug delivery strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada
| | | |
Collapse
|
3
|
Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine (Lond) 2024; 19:1347-1368. [PMID: 39105753 PMCID: PMC11318742 DOI: 10.1080/17435889.2024.2350356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Naveen Singh
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sri Pada Datta Chigurupati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Shivani Rai Paliwal
- Department of Pharmacy, Guru Ghasidas Vishwavidhyalaya (A Central University), Koni Bilaspur, Chhattisgarh, 495009, India
| | - Rishi Paliwal
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| |
Collapse
|
4
|
Tufano I, Vecchione R, Panzetta V, Battista E, Casale C, Imparato G, Netti PA. Multistage Nanocarrier Based on an Oil Core-Graphene Oxide Shell. Pharmaceutics 2024; 16:827. [PMID: 38931947 PMCID: PMC11207637 DOI: 10.3390/pharmaceutics16060827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Potent synthetic drugs, as well as biomolecules extracted from plants, have been investigated for their selectivity toward cancer cells. The main limitation in cancer treatment is the ability to bring such molecules within each single cancer cell, which requires accumulation in the peritumoral region followed by homogeneous spreading within the entire tissue. In the last decades, nanotechnology has emerged as a powerful tool due to its ability to protect the drug during blood circulation and allow enhanced accumulation around the leaky regions of the tumor vasculature. However, the ideal size for accumulation of around 100 nm is too large for effective penetration into the dense collagen matrix. Therefore, we propose a multistage system based on graphene oxide nanosheet-based quantum dots (GOQDs) with dimensions that are 12 nm, functionalized with hyaluronic acid (GOQDs-HA), and deposited using the layer-by-layer technique onto an oil-in-water nanoemulsion (O/W NE) template that is around 100 nm in size, previously stabilized by a biodegradable polymer, chitosan. The choice of a biodegradable core for the nanocarrier is to degrade once inside the tumor, thus promoting the release of smaller compounds, GOQDs-HA, carrying the adsorbed anticancer compound, which in this work is represented by curcumin as a model bioactive anticancer molecule. Additionally, modification with HA aims to promote active targeting of stromal and cancer cells. Cell uptake experiments and preliminary penetration experiments in three-dimensional microtissues were performed to assess the proposed multistage nanocarrier.
Collapse
Affiliation(s)
- Immacolata Tufano
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80138 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Valeria Panzetta
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80138 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80138 Naples, Italy
| | - Edmondo Battista
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80138 Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80138 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
5
|
Raikwar S, Yadav V, Jain S, Jain SK. Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: development, characterization, in vitro and in vivo assessment. J Liposome Res 2024; 34:239-263. [PMID: 37594466 DOI: 10.1080/08982104.2023.2248505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the in vitro drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the in vitro cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The in vivo tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the in vivo studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.
Collapse
Affiliation(s)
- Sarjana Raikwar
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| |
Collapse
|
6
|
Fidan Y, Muçaj S, Timur SS, Gürsoy RN. Recent advances in liposome-based targeted cancer therapy. J Liposome Res 2024; 34:316-334. [PMID: 37814217 DOI: 10.1080/08982104.2023.2268710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Nano-drug delivery systems have opened new pathways for tumor treatment by overcoming some of the limitations of conventional drugs, such as physiological degradation, short half-life, and rapid release. Liposomes are promising nanocarrier systems due to their biocompatibility, low toxicity, and high inclusivity, as well as their enhanced drug bioavailability. Various strategies for active targeting of liposomal formulations have been investigated to achieve the highest drug efficacy. This review aims to summarize current developments in novel liposomal formulations, particularly ligand-targeted liposomes (such as folate, transferrin, hyaluronic acid, antibodies, aptamer, and peptide, etc.) used for the therapy of various cancers and provide an insight on the challenges and future of liposomes for scientists and pharmaceutical companies.
Collapse
Affiliation(s)
- Yeliz Fidan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Stela Muçaj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Shinde A, Panchal K, Patra P, Singh S, Enakolla S, Paliwal R, Chaurasiya A. QbD Enabled Development and Evaluation of Pazopanib Loaded Nanoliposomes for PDAC Treatment. AAPS PharmSciTech 2024; 25:97. [PMID: 38710894 DOI: 10.1208/s12249-024-02806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.
Collapse
Affiliation(s)
- Aishwarya Shinde
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Kanan Panchal
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Parameswar Patra
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Sonali Singh
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Sucharitha Enakolla
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Akash Chaurasiya
- Translational Pharmaceutics Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Pilani, India.
| |
Collapse
|
8
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Saraf S, Jain SK. pH-sensitive liposomes bearing a chemotherapeutic agent and a natural apoptosis modulator for effective intracellular delivery to the solid tumor. Drug Deliv Transl Res 2023; 13:2961-2981. [PMID: 37306925 DOI: 10.1007/s13346-023-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
The intracellular delivery of the drug to the solid tumor is a major challenge in the treatment of solid tumors. This project aims to increase cytosolic drug delivery using the endosomal escape of drugs. Topotecan (TPT) and capsaicin were used for the treatment of solid tumors. The pH-dependent conversion of active lactone form to inactive carboxylic form is a major problem of TPT that limits its therapeutic use. Liposomal encapsulation of TPT improved the stability of active lactone form and increased the therapeutic efficacy of TPT. Endosomal degradation of liposomes may reduce the content in the target cells. To solve these problems, pH-sensitive liposomes (pSLPs) were developed which improved the intracellular drug delivery by the endosomal escape of drugs. The liposomes (LPs) bearing the drug(s) were prepared using the cast film method and optimized for various formulation and process variables using the Design-Expert 7 software by employing the Box-Behnken design (BBD). The developed hyaluronic acid (HA)-conjugated pSLPs (HA-pSLPs) displayed a vesicle size of 166.5 ± 2.31 nm, zeta potential - 30.53 ± 0.91, and entrapment efficiency of 44.39 ± 1.78%, and 73.48 ± 2.15% for TPT and CAP, respectively. HA-pSLPs displayed better cytotoxicity in comparison to free drugs either single or in combination on the MCF-7 cell line. The apoptosis and cellular uptake of HA-pSLPs were increased ⁓ 4.45-fold and ⁓ 6.95-fold as compared to unconjugated pSLPs, respectively. The pharmacokinetic studies in Balb/c mice demonstrated that HA-pSLPs increased the half-life, MRT, and AUC in comparison to the free drug solution. The HA-pSLPs formulation has shown remarkable tumor regression as compared to PpSLPs, pSLPs, and free drug combinations. These results demonstrated that TPT- and CAP-loaded HA-pSLPs offer a potential platform for targeted drug delivery to solid tumors.
Collapse
Affiliation(s)
- Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P, India, 470003
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, M.P, India, 470003.
| |
Collapse
|
10
|
Luo X. Nanobiotechnology-based strategies in alleviation of chemotherapy-mediated cardiotoxicity. ENVIRONMENTAL RESEARCH 2023; 238:116989. [PMID: 37633635 DOI: 10.1016/j.envres.2023.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The cardiovascular diseases have been among the most common malignancies and the first leading cause of death, even higher than cancer. The cardiovascular diseases can be developed as a result of cardiac dysfunction and damages to heart tissue. Exposure to toxic agents and chemicals that induce cardiac dysfunction has been of interest in recent years. The chemotherapy drugs are commonly used for cancer therapy and in these patients, cardiovascular diseases have been widely observed that is due to negative impact of chemotherapy drugs on the heart. These drugs increase oxidative damage and inflammation, and mediate apoptosis and cardiac dysfunction. Hence, nanotechnological approaches have been emerged as new strategies in attenuation of chemotherapy-mediated cardiotoxicity. The first advantage of nanoparticles can be explored in targeted and selective delivery of drugs to reduce their accumulation in heart tissue. Nanostructures can deliver bioactive and therapeutic compounds in reducing cardiotoxicity and alleviation toxic impacts of chemotherapy drugs. The functionalization of nanostructures increases their selectivity against tumor cells and reduces accumulation of drugs in heart tissue. The bioplatforms such as chitosan and alginate nanostructures can also deliver chemotherapy drugs and reduce their cardiotoxicity. The function of nanostructures is versatile in reduction of cardiotoxicity by chemotherapy drugs and new kind of platforms is hydrogels that can mediate sustained release of drug to reduce its toxic impacts on heart tissue. The various kinds of nanoplatforms have been developed for alleviation of cardiotoxicity and their future clinical application depends on their biocompatibility. High concentration level of chitosan nanoparticles can stimulate cardiotoxicity. Therefore, if nanotechnology is going to be deployed for drug delivery and reducing cardiotoxicity, the first pre-requirement is to lack toxicity on normal cells and have high biocompatibility.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China.
| |
Collapse
|
11
|
Safaei M, Khalighi F, Behabadi FA, Abpeikar Z, Goodarzi A, Kouhpayeh SA, Najafipour S, Ramezani V. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance. Nanomedicine (Lond) 2023; 18:1745-1768. [PMID: 37965906 DOI: 10.2217/nnm-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
This review discusses the application of nanoliposomes containing siRNA/drug to overcome multidrug resistance for all types of cancer treatments. As drug resistance-associated factors are overexpressed in many cancer cell types, pumping chemotherapy drugs out of the cytoplasm leads to an inadequate therapeutic response. The siRNA/drug-loaded nanoliposomes are a promising approach to treating multidrug-resistant cancer, as they can effectively transmit a small-molecule drug into the target cytoplasm, ensuring that the drug binds efficiently. Moreover, nanoliposome-based therapeutics with advances in nanotechnology can effectively deliver siRNA to cancer cells. Overall, nanoliposomes have the potential to effectively deliver siRNA and small-molecule drugs in a targeted manner and are thus a promising tool for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Fatemeh Khalighi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Fatemeh Akhavan Behabadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| |
Collapse
|
12
|
Borhaninia M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-targeted hyaluronic acid-b-poly (β-amino ester) pH-switchable polymersome for guided doxorubicin delivery to metastatic breast cancer. Int J Biol Macromol 2023; 248:125882. [PMID: 37473882 DOI: 10.1016/j.ijbiomac.2023.125882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In this study, a targeted pH-sensitive polymersome incorporating doxorubicin (DOX) was manufactured implementing diblock copolymer of hyaluronic acid-b-pPoly (β-amino ester) (HA-PBAE). The hydrophilic DOX was loaded into the aqueous compartment of HA-PBAE polymersomal structure during nanoprecipitation process with 60 % ± 3.0 entrapment efficiency (EE%) and 5.3 % ± 0.2 loading content (LC%) while demonstrating spherical morphology with size of 196 ± 3.8 nm and PDI of 0.3. The prepared platform (DOX-HA-PBAE) illustrated accelerated DOX release in acidic pH 5.4, and showed significantly higher cytotoxicity and cellular internalization in comparison with free DOX against 4T1 cell line (CD44 positive cell). In contrast, no significant growth inhibition was observed in CHO cell line (CD44 negative cell). Furthermore, DOX-HA-PBAE platform displayed higher therapeutic efficacy, favorable tumor accumulation and lower systemic toxicity in comparison with free DOX based on obtained experimental data in ectopic 4T1 tumor model in BALB/c Female mice in terms of tumor growth rate, survival rate, body weight loss, ex vivo biodistribution and pathological evaluations. The obtained results demonstrated that DOX-HA-PBAE polymersomes have potential to be used in metastatic breast cancer therapy with promising characteristics in terms of tumor growth suppression and safety profile.
Collapse
Affiliation(s)
- Morvarid Borhaninia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Ghosh P, Tiwari H, Lakkakula J, Roy A, Emran TB, Rashid S, Alghamdi S, Rajab BS, Almehmadi M, Allahyani M, Aljuaid A, Alsaiari AA, Sharma R, Babalghith AO. A decade's worth of impact: Dox loaded liposomes in anticancer activity. MATERIALS TODAY ADVANCES 2022; 16:100313. [DOI: 10.1016/j.mtadv.2022.100313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Meng L, Ren J, Li L. Hyaluronic acid-targeted mixed micelles encapsulating hypericin for breast cancer photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Carbohydrate anchored lipid nanoparticles. Int J Pharm 2022; 618:121681. [PMID: 35307469 DOI: 10.1016/j.ijpharm.2022.121681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Nanotechnology has been a dynamic field for formulation scientists with multidisciplinary research being conducted worldwide. Advancements in development of functional nanosystems have led to evolution of breakthrough technologies. Lipidic nanosystems, in particular, are highly preferred owing to their non-immunogenic safety profiles along with a range of versatile intrinsic properties. Surface modification of lipid nanoparticles by anchoring carbohydrates to these systems is one such attractive drug delivery technology. Carbohydrates confer interesting properties to the nanosystems such as stealth, biostability, bioavailability, reduced toxicity due to decreased immunogenic response, targeting potential as well as ease of commercial availability. The carbohydrate anchored systems can be developed using methods such as adsorption, incorporation (nanoprecipitation or solvent displacement method), crosslinking and grafting. Current review provides a detailed overview of potential lipid based nanoparticulate systems with an emphasis on liposomes, solid lipid nanoparticles, nanostructures lipid carriers and micelles. Review further explores basics of surface modification, methods applied therein, advantages of carbohydrates as surface modifiers, their versatile applications, techniques for characterization of carbohydrate anchored systems and vital regulatory aspects concerned with these specialized systems.
Collapse
|
16
|
D'Angelo NA, Noronha MA, Câmara MCC, Kurnik IS, Feng C, Araujo VHS, Santos JHPM, Feitosa V, Molino JVD, Rangel-Yagui CO, Chorilli M, Ho EA, Lopes AM. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. BIOMATERIALS ADVANCES 2022; 133:112623. [PMID: 35525766 DOI: 10.1016/j.msec.2021.112623] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Doxorubicin (DOX) is a natural antibiotic with antineoplastic activity. It has been used for over 40 years and remains one of the most used drugs in chemotherapy for a variety of cancers. However, cardiotoxicity limits its use for long periods. To overcome this limitation, encapsulation in smart drug delivery systems (DDS) brings advantages in comparison with free drug administration (i.e., conventional anticancer drug therapy). In this review, we present the most relevant nanostructures used for DOX encapsulation over the last 10 years, such as liposomes, micelles and polymeric vesicles (i.e., polymersomes), micro/nanoemulsions, different types of polymeric nanoparticles and hydrogel nanoparticles, as well as novel approaches for DOX encapsulation. The studies highlighted here show these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged DOX release, as well as reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Chuying Feng
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - Victor H S Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil; Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Valker Feitosa
- Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | | | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
17
|
Taleuzzaman M, Sartaz A, Alam MJ, Javed MN. Emergence of Advanced Manufacturing Techniques for Engineered Polymeric Systems in Cancer Treatment. ADVANCES IN CHEMICAL AND MATERIALS ENGINEERING 2022:152-172. [DOI: 10.4018/978-1-7998-9574-9.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Clinical performances of chemotherapeutic drugs which are used to manage different stages of cancers are usually facing numerous pharmacological challenges such as tumor microenvironment, high dose requirements, poor selectivity towards cancer cells, life-threatening cytotoxicity, and frequent drug resistance incidences, in addition to pharmacotechnical issues such as poor aqueous solubility, uncontrolled drug-release, low stability, non-specific bio-distribution, and erratic bioavailability profiles. The chapter aims to provide a brief account of advancements made in nanotechnology-enabled manufacturing engineering tools for manipulating polymeric materials as efficient carriers so that loaded anti-cancer drugs would exhibit better therapeutic applications and optimized clinical significance in cancers.
Collapse
|
18
|
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010146. [PMID: 35011376 PMCID: PMC8746670 DOI: 10.3390/molecules27010146] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a group of disorders characterized by uncontrolled cell growth that affects around 11 million people each year globally. Nanocarrier-based systems are extensively used in cancer imaging, diagnostics as well as therapeutics; owing to their promising features and potential to augment therapeutic efficacy. The focal point of research remains to develop new-fangled smart nanocarriers that can selectively respond to cancer-specific conditions and deliver medications to target cells efficiently. Nanocarriers deliver loaded therapeutic cargos to the tumour site either in a passive or active mode, with the least drug elimination from the drug delivery systems. This review chiefly focuses on current advances allied to smart nanocarriers such as dendrimers, liposomes, mesoporous silica nanoparticles, quantum dots, micelles, superparamagnetic iron-oxide nanoparticles, gold nanoparticles and carbon nanotubes, to list a few. Exhaustive discussion on crucial topics like drug targeting, surface decorated smart-nanocarriers and stimuli-responsive cancer nanotherapeutics responding to temperature, enzyme, pH and redox stimuli have been covered.
Collapse
|
19
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
20
|
Hierarchical Two-Dimensional Layered Double Hydroxide Coated Polydopamine Nanocarriers for Combined Chemodynamic and Photothermal Tumor Therapy. COATINGS 2021. [DOI: 10.3390/coatings11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The combination of chemodynamic therapy (CDT) and photothermal therapy (PTT) has proven to be successful in combating the challenges associated with cancer therapy. A combination of these therapies can maximize the benefits of each therapeutic modality through endogenous reduction-oxidation (redox) reaction and external laser power induction. In the current work, we have designed a copper-aluminum layered double hydroxide (CuAl-LDH) loaded doxorubicin (DOX) by a co-precipitation method; the surface was coated with polydopamine (PDA). The synthesized CuAl-LDH@DOX@PDA nanocarrier (NC) served as a Fenton-like catalyst with photothermal properties. It is well known that metal ion incorporated NCs can induce intracellular depletion of reduced glutathione (GSH) levels along with the reduction of Cu2+ to Cu+. The Cu+ ions in turn react with DOX leading to the generation of intracellular hydrogen peroxide (H2O2) molecules to produce the highly toxic hydroxyl radicals (•OH) through a Fenton-like reaction. The enhanced absorption of CuAl@DOX@PDA at 810 nm, greatly improved the photothermal efficiency in comparison with bare CuAl-LDH and CuAl-LDH@DOX. In vitro studies revealed the tremendous CDT/PTT efficacy of CuAl@DOX@PDA in suppressing A549 cancer cells. Furthermore, reactive oxygen species (ROS) assays and intracellular levels of various ROS cascade biomolecules support our findings in the efficient destruction of cancer cells through synergistic CDT/PTT therapy.
Collapse
|
21
|
Feng Y, Qin G, Chang S, Jing Z, Zhang Y, Wang Y. Antitumor Effect of Hyperoside Loaded in Charge Reversed and Mitochondria-Targeted Liposomes. Int J Nanomedicine 2021; 16:3073-3089. [PMID: 33953556 PMCID: PMC8091078 DOI: 10.2147/ijn.s297716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Hyperoside (HYP), a flavonol glycoside compound, has been shown to significantly inhibit the proliferation of malignant tumors. Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Objective We report a novel dual-functional liposome system possessing both extracellular charge reversal and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of cancer cells. Methods L-lysine was used as a linker to connect 2,3-dimethylmaleic anhydride (DMA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a new compound, DSPE-Lys-DMA (DLD). Then, DLD was mixed with other commercially available lipids to form charge reversed and mitochondria-targeted liposomes (DLD-Lip). The size, morphology, zeta potential, serum stability, and protein adsorption of the HYP loaded DLD-Lip (HYP/DLD-Lip) were measured. The release profile, cellular uptake, in vitro and in vivo toxicity, and anticancer activity of HYP/DLD-Lip were investigated. Results The results showed that the mean diameter of the liposomes was less than 200 nm. The zeta potential of the liposomes was negative at pH 7.4. However, the zeta potential was positive at weak acidic pH values with the cleavage of the DMA amide. The charge reversion of HYP/DLD-Lip facilitated the cellular internalization and mitochondrial accumulation for enhanced antitumor effect. The strongest tumor growth inhibition (TGI 88.79%) without systemic toxicity was observed in DLD/HYP-Lips-treated CBRH-7919 tumor xenograft BALB/C mice. Conclusion The charge reversed and mitochondria-targeted liposomes represented a promising anticancer drug delivery system for enhanced anticancer therapeutic efficacy.
Collapse
Affiliation(s)
- Yufei Feng
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Guozhao Qin
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Shuyuan Chang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Zhongxu Jing
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yanyan Zhang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yanhong Wang
- Key Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
22
|
Devrim B, Bolat ZB, Telci D, Şahin F, Gulyuz S, Ozkose UU, Yilmaz O, Bozkır A. Design and evaluation of peptide-18-targeted nanoliposomes constructed by poly(2-oxazoline)-DOPE for doxorubicin delivery. J Microencapsul 2021; 38:285-297. [PMID: 33853478 DOI: 10.1080/02652048.2021.1905094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS The aim of this study is to develop targeted nanoliposome formulations to provide efficient treatment for breast cancer. In this study, peptide 18-modified poly(2-ethyl-2-oxazoline)-dioleoylphosphatidylethanolamine (P18-PEtOx-DOPE), was synthesised to construct nanoliposomes. METHODS Doxorubicin (DOX) was encapsulated into the nanoliposomes by ethanol injection method. Particle size and polydispersity index were measured by dynamic light scattering. Zeta potential was determined by electrophoretic laser Doppler anemometry. The shape of the nanoliposomes was examined by transmission electron microscope. Specific bindings of P18-PEtOx-DOPE nanoliposomes were demonstrated on AU565 cells by confocal microscopy and flow cytometry studies. RESULTS DOX-loaded nanoliposomes with particle diameter of 150.00 ± 2.84 nm and PDI of 0.212 ± 0.013 were obtained. PEtOx-DOPE and PEtOx-DOPE nanoliposomes are non-toxic on HUVEC, HEK293 and hMSC cells for 48 h. Furthermore, P18-PEtOx-DOPE nanoliposomes demonstrated specificity towards AU565 cells with high binding affinity. CONCLUSIONS As a result, DOX-loaded P18-PEtOx-DOPE nanoliposomes can serve as favourable candidates in breast cancer targeted therapy.
Collapse
Affiliation(s)
- Burcu Devrim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Sevgi Gulyuz
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Maslak, Turkey
| | - Umut Ugur Ozkose
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Maslak, Turkey.,Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Istanbul, Turkey
| | - Ozgur Yilmaz
- Marmara Research Center, TUBITAK, Materials Institution, Gebze, Turkey
| | - Asuman Bozkır
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
Oz UC, Bolat ZB, Ozkose UU, Gulyuz S, Kucukturkmen B, Khalily MP, Ozcubukcu S, Yilmaz O, Telci D, Esendagli G, Sahin F, Bozkir A. A robust optimization approach for the breast cancer targeted design of PEtOx-b-PLA polymersomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111929. [PMID: 33812571 DOI: 10.1016/j.msec.2021.111929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The equipping of nanoparticles with the peptide moiety recognizing a particular receptor, enables cell or tissue-specific targeting, therefore the optimization of the targeted nanoparticles is a key factor in the formulation design process. In this paper, we report the optimization concept of Doxorubicin encapsulating PEtOx-b-PLA polymersome formulation equipped with Peptide18, which is a breast cancer recognizing tumor homing peptide, and the unveiling of the cell-specific delivery potential. The most dominant formulation parameters, which are the polymer to Doxorubicin mass ratio (w/w) and the aqueous to organic phase ratio (v/v), were optimized using Central Composite Design (CCD) based Response Surface Methodology. The characteristics of optimum polymersome formulation were determined as the hydrodynamic diameter of 146.35 nm, the PDI value of 0.136, and the encapsulation efficiency of 57.11% and TEM imaging, which are in agreement with the DLS data, showed the spherical morphology of the polymersomes. In order to demonstrate the breast cancer-specific delivery of targeted polymersomes, the flow cytometry and confocal microscopy analyses were carried out. The targeted polymersomes were accumulated 8 times higher in AU565 cells compared to MCF10A cells and the intracellular Doxorubicin was almost 10 times higher in AU565 cells. The CCD-mediated optimized targeted polymersomes proposed in this report holds the promise of targeted therapy for breast cancer and can be potentially used for the development of novel treatments.
Collapse
Affiliation(s)
- Umut Can Oz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey
| | - Zeynep Busra Bolat
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, 34755 Istanbul, Turkey; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Kucukcekmece, 34303, Istanbul, Turkey
| | - Umut Ugur Ozkose
- Materials Institute, Marmara Research Center, TUBITAK, Gebze 41470, Kocaeli, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak 34469, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Tuzla, 34940, Istanbul, Turkey
| | - Sevgi Gulyuz
- Materials Institute, Marmara Research Center, TUBITAK, Gebze 41470, Kocaeli, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Berrin Kucukturkmen
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey
| | - Melek Parlak Khalily
- Department of Chemistry, Faculty of Science and Letters, Yozgat Bozok University, Yozgat 66200, Turkey
| | - Salih Ozcubukcu
- Department of Chemistry, Faculty of Science, Middle East Technical University, Ankara 06800, Turkey
| | - Ozgur Yilmaz
- Materials Institute, Marmara Research Center, TUBITAK, Gebze 41470, Kocaeli, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, 34755 Istanbul, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, 34755 Istanbul, Turkey
| | - Asuman Bozkir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey.
| |
Collapse
|
24
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
25
|
Mansoori B, Mohammadi A, Abedi-Gaballu F, Abbaspour S, Ghasabi M, Yekta R, Shirjang S, Dehghan G, Hamblin MR, Baradaran B. Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells. J Cell Physiol 2020; 235:6817-6830. [PMID: 31989649 PMCID: PMC7384933 DOI: 10.1002/jcp.29576] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
The use of liposomes as drug carriers improves the therapeutic efficacy of anticancer drugs, while at the same time reducing side effects. Hyaluronic acid (HA) is recognized by the CD44 receptor, which is overexpressed in many cancer cells. In this study, we developed HA-modified liposomes encapsulating 5-fluorouracil (5-FU) and tested them against a CD44 expressing colorectal cell line (HT29) and a non-CD44 expressing hepatoma cell line. The average size of 5-FU-lipo and 5-FU-lipo-HA nanoparticles were 112 ± 28 and 144 ± 77 nm, respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay showed selective cancer cell death depending on the CD44 expression in a time-dependent manner. Apoptosis assays and cell-cycle analysis indicated that G0/G1 arrest occurred. The colony formation study revealed that cells treated with 5-FU-lipo and 5-FU-lipo-HA had reduced colony formation. Quantitative reverse-transcription polymerase chain reaction study showed that the oncogenic messenger RNA and microRNA levels were significantly reduced in the 5-FU-lipo-HA-treated group, while tumor suppressors were increased in that group. We suggest that optimal targeted delivery and release of 5-FU into colorectal cancer cells, renders them susceptible to apoptosis, cell-cycle arrest, and decreased colony formation.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Soheil Abbaspour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Saraf S, Jain A, Tiwari A, Verma A, Jain SK. Engineered liposomes bearing camptothecin analogue for tumour targeting: in vitro and ex-vivo studies. J Liposome Res 2020; 31:326-341. [PMID: 32718195 DOI: 10.1080/08982104.2020.1801725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Ankit Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| | - Sanjay K. Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| |
Collapse
|
27
|
Li D, Yao S, Zhou Z, Shi J, Huang Z, Wu Z. Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. Carbohydr Res 2020; 493:108032. [PMID: 32417443 DOI: 10.1016/j.carres.2020.108032] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Milk exosomes (mExo), similar to cell-derived exosomes, are emerging as promising nanocarriers for delivery of therapeutic molecules such as chemical drugs and siRNA, due to the excellent biocompatibility and low-cost production from bovine milk. However, additional modification remains required to apply milk exosomes for tumor-specific drug delivery. Here, we attempted to develop a novel strategy for directing doxorubicin (Dox)-loaded mExo to CD44-overexpressing tumor cells. Hyaluronan (HA), a CD44-specific ligand, was functionalized with an amphiphilic molecule DSPE-PEG2000, which enabled the spontaneous decoration of Dox-loaded mExo with HA onto the phospholipid bilayer. The obtained nanocarrier HA-mExo-Dox was shown to be able to selectively deliver Dox into cells with over-expressed CD44 instead of control cells and trigger the notable tumor cells death in the in vitro analysis. This study demonstrates the potential use of HA-displaying mExo for tumor cell-specific drug delivery and this strategy should prove to be feasible for targeted cancer therapy.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062, Wuxi, Jiangsu, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
28
|
He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15:416-448. [PMID: 32952667 PMCID: PMC7486519 DOI: 10.1016/j.ajps.2019.08.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional tumor-targeted drug delivery systems (DDSs) face challenges, such as unsatisfied systemic circulation, low targeting efficiency, poor tumoral penetration, and uncontrolled drug release. Recently, tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas. With the introduction of several additional functionalities, the properties of these smart DDSs including size, surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting, and eventually achieve desired drug release for an optimized therapeutic efficiency. This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery. Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli, including pH, glutathione, adenosine-triphosphate, reactive oxygen species, enzyme and inflammatory factors are summarized. Special emphasis of this review is placed on their responsive mechanisms, drug loading models, drawbacks and merits. Several typical multi-stimuli responsive DDSs are listed. And the main challenges and potential future development are discussed.
Collapse
Affiliation(s)
- Qunye He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dongming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
29
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101549] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Tang M, Svirskis D, Leung E, Kanamala M, Wang H, Wu Z. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? J Control Release 2019; 305:89-100. [PMID: 31096017 DOI: 10.1016/j.jconrel.2019.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/04/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Chemoresistance poses a major challenge in cancer treatment. This study aims to investigate whether intracellular drug delivery using hyaluronic acid (HA) functionalised pH-sensitive liposomes (HA-pSL) can circumvent gemcitabine resistance in pancreatic cancer (PC). HA-pSL were obtained by covalently conjugating HA with preformed pSL. A resistant PC cell line Gr2000 was developed by exposing MIA PaCa-2 cells to gemcitabine, and characterised for their expression of CD44, a receptor for HA, and drug transporters. Cellular uptake and intracellular trafficking of liposomes were determined by confocal microscopy and HPLC analysis of intracellular drug content. Following a pharmacokinetic study in rats, anti-tumour efficacy was compared between MIA PaCa-2 and Gr2000 xenograft mouse models. HA-pSL with an HA density of 179 μg/μmol had a larger size (152.3 vs 136.3 nm), and higher zeta potential (-46.8 vs -10.5 mV) than pSL. The sensitivity of Gr2000 to gemcitabine reduced 444 times compared to its parental cell line, despite no change to the total drug influx, as drug influx- and efflux-transporters in Gr2000 cells were simultaneously up-regulated. Both cell lines had high expression of CD44. HA facilitated cell uptake without compromising the endosome-escape ability of pSL as evidenced by confocal images and co-localization analysis of the dual-fluorescence labelled liposomes and Lysotracker. HA-pSL significantly outperformed pSL, and increased cellular drug influx by 3.6 times in MIA PaCa-2 cells, and 4.6 times in Gr2000 cells. Both liposomes improved the pharmacokinetic profile of free drug. HA-pSL treatment was superior to pSL, and resulted in 6.4 times smaller tumours (weight) in the MIA PaCa-2 xenograft models, and 3.1 smaller in the Gr2000 models compared with the free drug. Taken together, this study highlighted the use of intracellular delivery strategies (HA-CD44 interaction and endosome escape) to overcome gemcitabine resistance, however, the overall improvement was marginal and tumours still existed. Further improvement in delivery efficiency of HA-pSL to target tumours and additional manipulation of the cellular metabolism of gemcitabine are needed to tackle chemoresistance.
Collapse
Affiliation(s)
- Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Manju Kanamala
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai 264005, PR China.
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
32
|
Kim JH, Moon MJ, Kim DY, Heo SH, Jeong YY. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers (Basel) 2018; 10:polym10101133. [PMID: 30961058 PMCID: PMC6403826 DOI: 10.3390/polym10101133] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hyaluronic acid (HA) is a nonsulfated glycosaminoglycan and a major component of the extracellular matrix. HA is overexpressed by numerous tumor cells, especially tumor-initiating cells. HA-based nanomaterials play in importance role in drug delivery systems. HA is used in various types of nanomaterials including micelle, polymersome, hydrogel, and inorganic nanoparticle formulations. Many experiments show that HA-based nanomaterials can serve as a platform for targeted chemotherapy, gene therapy, immunotherapy, and combination therapy with good potential for future biomedical applications in cancer treatment.
Collapse
Affiliation(s)
- Jin Hong Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Myeong Ju Moon
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Dong Yi Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea.
| |
Collapse
|
33
|
Kim JA, Kim JC. Temperature and electric field-triggerable liposomes incorporating poly(hydroxyethyl acrylate-co-hexadecyl acrylate-co-carboxyethyl acrylate). J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Abstract
The therapeutic potential of liposomes can be amplified when combined with biomaterial scaffolds. Such configurations overcome the convergent demands of therapies by enabling enhanced delivery, environmental responsiveness and potency. Liposomes benefit from the increased physical and mechanical strength, favorable rheological properties and natural environment conducive to improved tissue formation that scaffolds provide, while enabling biocompatible delivery of hydrophilic and lipophilic compounds that can be further functionalized to achieve targeted delivery. Topical, ocular, oral, nasal and vaginal applications have been explored using various polymer- or nanofiber-based scaffolds. Mechanistic and rheological findings on complexation between biomaterials, liposomes and cargo have led to multimodal systems with tremendous clinical potential. A review of the key developments in bioengineered liposome-scaffold composites is presented in this manuscript.
Collapse
|
35
|
Ji M, Qiu X, Hou L, Huang S, Li Y, Liu Y, Duan S, Hu Y. Construction and application of a liver cancer-targeting drug delivery system based on core-shell gold nanocages. Int J Nanomedicine 2018; 13:1773-1789. [PMID: 29606870 PMCID: PMC5868592 DOI: 10.2147/ijn.s151043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In order to achieve drug targeting and controlled release, we have successfully developed a novel drug release system DOX/AuNCs-PM-HA with gold nanocages (AuNCs) as photothermal cores, thermally responsive copolymer P(NIPAM-co-Am) (PM) as the near-infrared (NIR) stimuli gatekeeper and hyaluronic acid as a targeting ligand as well as a capping agent. Methods Cell uptake and cell viability were investigated. In vivo photoacoustic tomography imaging in H22 tumor bearing mice was analyzed for the tumor targeting effect of the nanocomplexes. Antitumor efficacy and the tissue distribution in vivo were investigated. Results In vitro results demonstrated that the DOX/AuNCs-PM-HA had significant anticancer activity against SMMC-7721 cells under NIR irradiation. Furthermore, in vivo photoacoustic tomography imaging of the nanocomplexes in H22 tumor bearing mice could indicate effective tumor targeting. Our studies on antitumor efficacy and the tissue distribution in vivo showed that many DOX/AuNCs-PM-HA nanocomplexes could efficiently accumulate at the tumor site so that they could inhibit the tumor growth effectively with limited side effects. The in vitro and in vivo results confirmed that the tumor-targeting and controlled-release drug system DOX/AuNCs-PM-HA with the combination of chemotherapy and photothermal therapy showed strong anti-tumor effect and would have great potential for future cancer therapy. Conclusion This tumor targeting DOX/AuNCs-PM-HA nanocomplex responded not only to the external stimuli of NIR, but also the internal stimuli of hyaluronidase, providing the potential for pinpointed and multi-stimuli responsive intracellular drug release.
Collapse
Affiliation(s)
- Mengfei Ji
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaojing Qiu
- Henan Eye Institute, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Lin Hou
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shengnan Huang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanmin Li
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shaofeng Duan
- College of Pharmacy, Henan University, Kaifeng, People's Republic of China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yurong Hu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
36
|
Abstract
Cancer stem cells (CSC) are a prominent component of the tumor bulk and extensive research has now identified them as the subpopulation responsible for tumor relapse and resistance to anti-cancer treatments. Surrounding the bulk formed of tumor cells, an extracellular matrix contributes to cancer growth; the main component of the tumor micro-environment is hyaluronan, a large disaccharide forming a molecular network surrounding the cells. The hyaluronan-dependent coat can regulate cell division and motility in cancer progression and metastasis. One of the receptors of hyaluronan is CD44, a surface protein frequently used as a CSC marker. Indeed, tumor cells with high levels of CD44 appear to exhibit CSC properties and are characterized by elevated relapse rate. The CD44-hyaluronan-dependent interactions are Janus-faced: on one side, they have been shown to be crucial in both malignancy and resistance to therapy; on the other, they represent a potential value for future therapies, as disturbing the CD44-hyaluronan axis would not only impair the pericellular matrix but also the subpopulation of self-renewing oncogenic cells. Here, we will review the key roles of HA and CD44 in CSC maintenance and propagation and will show that CSC-like spheroids from a rabdhomyosarcoma cell line, namely RD, have a prominent pericellular coat necessary for sphere formation and for elevated migration. Thus, a better understanding of the hyaluronan-CD44 interactions holds the potential for ameliorating current cancer therapies and eradicating CSC.
Collapse
|
37
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
38
|
Buscema M, Matviykiv S, Mészáros T, Gerganova G, Weinberger A, Mettal U, Mueller D, Neuhaus F, Stalder E, Ishikawa T, Urbanics R, Saxer T, Pfohl T, Szebeni J, Zumbuehl A, Müller B. Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo. J Control Release 2017; 264:14-23. [PMID: 28803115 DOI: 10.1016/j.jconrel.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad-PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA.
Collapse
Affiliation(s)
- Marzia Buscema
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Sofiya Matviykiv
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University Budapest, Hungary; SeroScience Ltd., Budapest, Hungary
| | - Gabriela Gerganova
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | | | - Ute Mettal
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Dennis Mueller
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Frederik Neuhaus
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Etienne Stalder
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | | | | - Till Saxer
- Cardiology Division, University Hospital of Geneva, Geneva, Switzerland
| | - Thomas Pfohl
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University Budapest, Hungary; SeroScience Ltd., Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Andreas Zumbuehl
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| |
Collapse
|
39
|
Smistad G, Nyström B, Zhu K, Grønvold MK, Røv-Johnsen A, Hiorth M. Liposomes coated with hydrophobically modified hydroxyethyl cellulose: Influence of hydrophobic chain length and degree of modification. Colloids Surf B Biointerfaces 2017; 156:79-86. [DOI: 10.1016/j.colsurfb.2017.04.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/20/2022]
|
40
|
Yang MM, Wilson WR, Wu Z. pH-Sensitive PEGylated liposomes for delivery of an acidic dinitrobenzamide mustard prodrug: Pathways of internalization, cellular trafficking and cytotoxicity to cancer cells. Int J Pharm 2017; 516:323-333. [DOI: 10.1016/j.ijpharm.2016.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/25/2022]
|
41
|
Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. Int J Mol Sci 2016; 17:E1440. [PMID: 27589733 PMCID: PMC5037719 DOI: 10.3390/ijms17091440] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic-organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the "state of the art" of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece.
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, Beykoz 34810, Istanbul, Turkey.
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece.
| |
Collapse
|
42
|
Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine (Lond) 2016; 11:2341-57. [PMID: 27526874 DOI: 10.2217/nnm-2016-0117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics. Finally, we will discuss the main challenges and technological advances that will allow these carriers to be considered as candidates for clinical development.
Collapse
Affiliation(s)
- Ana Cadete
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|