1
|
Levasseur S, Purvis N, Trozzo S, Chung SH, Ades M, Drudi LM. Venous Thromboembolism in Exploration Class Human Spaceflight. Aerosp Med Hum Perform 2024; 95:45-53. [PMID: 38158572 DOI: 10.3357/amhp.6290.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
INTRODUCTION: A recent finding of a deep venous thrombosis during spaceflight has prompted the need to clarify mechanisms and risks of venous thromboembolism (VTE). In turn, mitigation countermeasures, diagnostic modalities, and treatment options must be explored. The objective of this review was to synthesize current evidence on VTE in spaceflight.METHODS: A literature review was performed from inception to April 2023 pertaining to VTE in the context of spaceflight or ground-based analogs with human participants. PubMed was searched for papers written in English using the terms "spaceflight" or "weightlessness" and "thrombotic" or "embolism" or "thromboembolism" in "venous" or "veins". Papers using cellular or animal models were excluded.RESULTS: There were 63 papers captured; 7 original scientific studies, 3 narrative reviews, 2 systematic reviews, and 3 commentaries discussed VTE in spaceflight. Reference lists were screened. Important themes included: altered venous hemodynamics, increased fibrinogen and coagulation markers, hypoalbuminemia, and immune dysfunction. Additional risk factors may be seen in women, such as the use of oral contraceptives.DISCUSSION: Venous stasis and decreased shear stress secondary to fluid shifts may induce inflammatory changes in the venous system, resulting in endothelial damage and upregulation of the coagulation cascade. Additionally, women in space are subject to physiological factors increasing their VTE risk, such as the use of oral contraceptives, inducing increased blood viscosity and hypoalbuminemia. Efforts should also be placed in optimizing sensitivity and specificity of imaging markers, payload, and training ability, notably the use of vector flow imaging, and improving point-of-testing biomarkers, such as albumin and p-selectin.Levasseur S, Purvis N, Trozzo S, Chung SH, Ades M, Drudi LM. Venous thromboembolism in exploration class human spaceflight. Aerosp Med Hum Perform. 2024; 95(1):45-53.
Collapse
|
2
|
Elahi MM, Witt AN, Pryzdial ELG, McBeth PB. Thrombotic triad in microgravity. Thromb Res 2024; 233:82-87. [PMID: 38029549 DOI: 10.1016/j.thromres.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Thrombotic disease may be an underdiagnosed condition of prolonged exposure to microgravity and yet the underlying factors remain poorly defined. Recently, an internal jugular vein thrombosis was diagnosed in a low-risk female astronaut after an approximately 7-week space mission. Six of the additional 10 crew members demonstrated jugular venous flow risk factors, such as suspicious stagnation or retroversion. Fortunately, all were asymptomatic. Observations in space as well as clinical and in vitro microgravity studies on Earth, where experiments are designed to recapitulate the conditions of space, suggest effects on blood flow stasis, coagulation, and vascular function. In this article, the related literature on thrombotic disease in space is reviewed, with consideration of these elements of Virchow's triad.
Collapse
Affiliation(s)
- Mohammad M Elahi
- Faculty of Medicine, University of British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Canada.
| | - Alexandra N Witt
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Canada; Canadian Blood Services, Medical Affairs and Innovation, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Canada; Canadian Blood Services, Medical Affairs and Innovation, Canada
| | - Paul B McBeth
- Faculty of Medicine, Department of Surgery, University of Calgary, Canada; Faculty of Medicine, Department of Critical Care Medicine, University of Calgary, Canada
| |
Collapse
|
3
|
Bonnefoy J, Baselet B, Moser D, Ghislin S, Miranda S, Riant E, Vermeesen R, Keiler AM, Baatout S, Choukér A, Frippiat JP. B-Cell Homeostasis Is Maintained During Two Months of Head-Down Tilt Bed Rest With or Without Antioxidant Supplementation. Front Immunol 2022; 13:830662. [PMID: 35251019 PMCID: PMC8892569 DOI: 10.3389/fimmu.2022.830662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of the immune system could seriously impair the ability to combat infections during future long-duration space missions. However, little is known about the effects of spaceflight on the B-cell compartment. Given the limited access to astronaut samples, we addressed this question using blood samples collected from 20 healthy male volunteers subjected to long-duration bed rest, an Earth-based analog of spaceflight. Hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, four B-cell subsets, immunoglobulin isotypes, six cytokines involved in inflammation, cortisone and cortisol were quantified at five time points. Tibia microarchitecture was also studied. Moreover, we investigated the efficiency of antioxidant supplementation with a cocktail including polyphenols, omega 3, vitamin E and selenium. Our results show that circulating hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, and B-cell subsets were not affected by bed rest. Cytokine quantification suggested a lower systemic inflammatory status, supported by an increase in serum cortisone, during bed rest. These data confirm the in vivo hormonal dysregulation of immunity observed in astronauts and show that bed rest does not alter B-cell homeostasis. This lack of an impact of long-term bed rest on B-cell homeostasis can, at least partially, be explained by limited bone remodeling. None of the evaluated parameters were affected by the administration of the antioxidant supplement. The non-effectiveness of the supplement may be because the diet provided to the non-supplemented and supplemented volunteers already contained sufficient antioxidants. Given the limitations of this model, further studies will be required to determine whether B-cell homeostasis is affected, especially during future deep-space exploration missions that will be of unprecedented durations.
Collapse
Affiliation(s)
- Julie Bonnefoy
- Stress Immunity Pathogens Laboratory, UR7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Dominique Moser
- Laboratory of Translational Research Stress and Immunity, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University (LUM), Munich, Germany
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, UR7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Silvana Miranda
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | - Elodie Riant
- Cytometry Facility, I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), TRI Genotoul, Toulouse, France
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium
| | | | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Center (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Faculty of Biosciences Engineering, Ghent University, Ghent, Belgium
| | - Alexander Choukér
- Laboratory of Translational Research Stress and Immunity, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University (LUM), Munich, Germany
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
4
|
Limper U, Tank J, Ahnert T, Maegele M, Grottke O, Hein M, Jordan J. The thrombotic risk of spaceflight: has a serious problem been overlooked for more than half of a century? Eur Heart J 2021; 42:97-100. [PMID: 32428936 DOI: 10.1093/eurheartj/ehaa359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
The first ever venous thrombotic condition associated with spaceflight, an internal jugular vein thrombus requiring anticoagulation, has recently been reported. Systematic investigation of space travel-associated thrombotic risk has not been conducted. Cellular, animal, and human studies performed in ground-based models and in actual weightlessness revealed influences of weightlessness and gravity on the blood coagulation system. However, human study populations were small and limited to highly selected participants. Evidence in individuals with medical conditions and older persons is lacking. Evidence for thrombotic risk in spaceflight is unsatisfactory. This issue deserves further study in heterogeneous, high risk populations to find prevention strategies and to enable safe governmental and touristic human spaceflight.
Collapse
Affiliation(s)
- Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Anaesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Tobias Ahnert
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Marc Maegele
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Oliver Grottke
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc Hein
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Chair of Aerospace Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Fröbert O, Frøbert AM, Kindberg J, Arnemo JM, Overgaard MT. The brown bear as a translational model for sedentary lifestyle-related diseases. J Intern Med 2020; 287:263-270. [PMID: 31595572 DOI: 10.1111/joim.12983] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sedentary lifestyle accelerates biological ageing, is a major risk factor for developing metabolic syndrome and is associated with cardiovascular disease, diabetes mellitus, kidney failure, sarcopenia and osteoporosis. In contrast to the linear path to worsening health in humans with metabolic syndrome, brown bears have developed a circular metabolic plasticity enabling these animals to tolerate obesity and a 'sedentary lifestyle' during hibernation and exit the den metabolically healthy in spring. Bears are close to humans physiology wise, much closer than rodents, the preferred experimental animals in medical research, and may better serve as translational model to develop treatments for lifestyle-related diseases. In this review, aspects of brown bear hibernation survival strategies are outlined and conceivable experimental strategies to learn from bears are described.
Collapse
Affiliation(s)
- O Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - A M Frøbert
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - J Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.,Norwegian Institute for Nature Research, Trondheim, Norway
| | - J M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - M T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Kehler DS, Theou O, Rockwood K. Bed rest and accelerated aging in relation to the musculoskeletal and cardiovascular systems and frailty biomarkers: A review. Exp Gerontol 2019; 124:110643. [PMID: 31255732 DOI: 10.1016/j.exger.2019.110643] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Prolonged bed rest and lifelong physical inactivity cause deleterious effects to multiple physiological systems that appear to hasten aging processes. Many such changes are similar to those seen with microgravity in space, but at a much faster rate. Head down tilt bed rest models are used to study whole-body changes that occur with spaceflight. We propose that bed rest can be used to quantify accelerated human aging in relation to frailty. In particular, frailty as a measure of the accumulation of deficits estimates the variability in aging across systems, and moves away from the traditional single-system approach. Here, we provide an overview of the impact of bed rest on the musculoskeletal and cardiovascular systems as well as frailty-related biological markers and inflammatory cytokines. We also propose future inquiries to study the accumulation of deficits with head down bed rest and bed rest in the clinical setting, specifically to understand how unrepaired and unremoved subclinical and subcellular damage give rise to clinically observable health problems.
Collapse
Affiliation(s)
- D S Kehler
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - O Theou
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - K Rockwood
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Willis EA, Shearer JJ, Matthews CE, Hofmann JN. Association of physical activity and sedentary time with blood cell counts: National Health and Nutrition Survey 2003-2006. PLoS One 2018; 13:e0204277. [PMID: 30252884 PMCID: PMC6155506 DOI: 10.1371/journal.pone.0204277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Objective To assess the association of objectively measured levels of physical activity and sedentary time with major blood cell counts (e.g. white blood cells, red blood cells, platelets) among adults. Methods Data collected from the 2003–2004 and 2005–2006 cycles of the National Health and Nutrition Examination Survey (NHANES) was used to assess blood cell counts in relation to objectively measured physical activity and sedentary time (accelerometer). A series of linear regressions modes were used to assess these associations adjusting for a range of factors known to be associated with blood cell counts, including age, body mass index, dietary factors, and previous infections. Results Higher levels of moderate-vigorous physical activity (ptrend<0.001) and lower sedentary time (ptrend = 0.040) were associated with lower white blood cell counts. Conclusion These results suggest that modifiable health behaviors, such as physical activity and sedentary time, may be associated with inflammatory status through white blood cell counts, which may be important for future disease risk.
Collapse
Affiliation(s)
- Erik A. Willis
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (JS); (EW)
| | - Joseph J. Shearer
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, United States of America
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (JS); (EW)
| | - Charles E. Matthews
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|