1
|
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles. Pharmaceutics 2024; 16:449. [PMID: 38675110 PMCID: PMC11054466 DOI: 10.3390/pharmaceutics16040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriasis (PSO) is a chronic autoimmune skin condition characterized by the rapid and excessive growth of skin cells, which leads to the formation of thick, red, and scaly patches on the surface of the skin. These patches can be itchy and painful, and they may cause discomfort for patients affected by this condition. Therapies for psoriasis aim to alleviate symptoms, reduce inflammation, and slow down the excessive skin cell growth. Conventional topical treatment options are non-specific, have low efficacy and are associated with adverse effects, which is why researchers are investigating different delivery mechanisms. A novel approach to drug delivery using nanoparticles (NPs) shows promise in reducing toxicity and improving therapeutic efficacy. The unique properties of NPs, such as their small size and large surface area, make them attractive for targeted drug delivery, enhanced drug stability, and controlled release. In the context of PSO, NPs can be designed to deliver active ingredients with anti-inflammatory effect, immunosuppressants, or other therapeutic compounds directly to affected skin areas. These novel formulations offer improved access to the epidermis and facilitate better absorption, thus enhancing the therapeutic efficacy of conventional anti-psoriatic drugs. NPs increase the surface-to-volume ratio, resulting in enhanced penetration through the skin, including intracellular, intercellular, and trans-appendage routes. The present review aims to discuss the latest approaches for the topical therapy of PSO using NPs. It is intended to summarize the results of the in vitro and in vivo examinations carried out in the last few years regarding the effectiveness and safety of nanoparticles.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Van Bocxlaer K, McArthur KN, Harris A, Alavijeh M, Braillard S, Mowbray CE, Croft SL. Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics 2021; 13:516. [PMID: 33918099 PMCID: PMC8069359 DOI: 10.3390/pharmaceutics13040516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022] Open
Abstract
In cutaneous leishmaniasis (CL), parasites reside in the dermis, creating an opportunity for local drug administration potentially reducing adverse effects and improving treatment adherence compared to current therapies. Polymeric film-forming systems (FFSs) are directly applied to the skin and form a thin film as the solvent evaporates. In contrast to conventional topical dosage forms, FFSs strongly adhere to the skin, favouring sustained drug delivery to the affected site, reducing the need for frequent applications, and enhancing patient compliance. This study reports the first investigation of the use of film-forming systems for the delivery of DNDI-0690, a nitroimidazole compound with potent activity against CL-causing Leishmania species. A total of seven polymers with or without plasticiser were evaluated for drying time, stickiness, film-flexibility, and cosmetic attributes; three FFSs yielded a positive evaluation for all test parameters. The impact of each of these FFSs on the permeation of the model skin permeant hydrocortisone (hydrocortisone, 1% (w/v) across the Strat-M membrane was evaluated, and the formulations resulting in the highest and lowest permeation flux (Klucel LF with triethyl citrate and Eudragit RS with dibutyl sebacate, respectively) were selected as the FFS vehicle for DNDI-0690. The release and skin distribution of the drug upon application to Leishmania-infected and uninfected BALB/c mouse skin were examined using Franz diffusion cells followed by an evaluation of the efficacy of both DNDI-0690 FFSs (1% (w/v)) in an experimental CL model. Whereas the Eudragit film resulted in a higher permeation of DNDI-0690, the Klucel film was able to deposit four times more drug into the skin, where the parasite resides. Of the FFSs formulations, only the Eudragit system resulted in a reduced parasite load, but not reduced lesion size, when compared to the vehicle only control. Whereas drug delivery into the skin was successfully modulated using different FFS systems, the FFS systems selected were not effective for the topical application of DNDI-0690. The convenience and aesthetic of FFS systems alongside their ability to modulate drug delivery to and into the skin merit further investigation using other promising antileishmanial drugs.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- Department of Biology, York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Kerri-Nicola McArthur
- Pharmidex Pharmaceutical Services Ltd., London EC2V 8AU, UK; (K.-N.M.); (A.H.); (M.A.)
| | - Andy Harris
- Pharmidex Pharmaceutical Services Ltd., London EC2V 8AU, UK; (K.-N.M.); (A.H.); (M.A.)
| | - Mo Alavijeh
- Pharmidex Pharmaceutical Services Ltd., London EC2V 8AU, UK; (K.-N.M.); (A.H.); (M.A.)
| | - Stéphanie Braillard
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.B.); (C.E.M.)
| | - Charles E. Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.B.); (C.E.M.)
| | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| |
Collapse
|
3
|
In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery. Int J Mol Sci 2016; 18:ijms18010032. [PMID: 28035957 PMCID: PMC5297667 DOI: 10.3390/ijms18010032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of this work was to assess in vivo the anti-inflammatory efficacy and tolerability of clobetasol propionate (CP) loaded lecithin/chitosan nanoparticles incorporated into chitosan gel for topical application (CP 0.005%). As a comparison, a commercial cream (CP 0.05% w/w), and a sodium deoxycholate gel (CP 0.05% w/w) were also evaluated. Lecithin/chitosan nanoparticles were prepared by self-assembling of the components obtained by direct injection of soybean lecithin alcoholic solution containing CP into chitosan aqueous solution. Nanoparticles obtained had a particle size around 250 nm, narrow distribution (polydispersity index below 0.2) and positive surface charge, provided by a superficial layer of the cationic polymer. The nanoparticle suspension was then loaded into a chitosan gel, to obtain a final CP concentration of 0.005%. The anti-inflammatory activity was evaluated using carrageenan-induced hind paw edema test on Wistar rats, the effect of formulations on the barrier property of the stratum corneum were determined using transepidermal water loss measurements (TEWL) and histological analysis was performed to evaluate the possible presence of morphological changes. The results obtained indicate that nanoparticle-in-gel formulation produced significantly higher edema inhibition compared to other formulations tested, although it contained ten times less CP. TEWL measurements also revealed that all formulations have no significant disturbance on the barrier function of skin. Furthermore, histological analysis of rat abdominal skin did not show morphological tissue changes nor cell infiltration signs after application of the formulations. Taken together, the present data show that the use of lecithin/chitosan nanoparticles in chitosan gel as a drug carrier significantly improves the risk-benefit ratio as compared with sodium-deoxycholate gel and commercial cream formulations of CP.
Collapse
|
4
|
Frederiksen K, Guy RH, Petersson K. The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs. Expert Opin Drug Deliv 2015; 13:349-60. [PMID: 26609868 DOI: 10.1517/17425247.2016.1124412] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dosing regimens requiring multiple daily applications frequently result in poor patient compliance, especially in the treatment of chronic skin diseases. Consequently, development of sustained delivery systems for topical drugs permitting less frequent dosing is of continuing interest for dermatological therapy. AREAS COVERED This potential of polymeric film-forming systems (FFS), created in situ on the skin, as sustained delivery platforms for topical drug delivery is reviewed. Key formulation parameters that determine delivery efficiency are considered focussing on those that permit a drug reservoir to be established in the upper layers of the skin and/or on the skin surface from which release can be sustained over a prolonged period. The advantageous and superior cosmetic attributes of FFS (compared to conventional semi-solid formulations) that offer significantly improved patient compliance are also addressed. EXPERT OPINION The promise of polymeric FFS as convenient and aesthetic platforms for sustained topical drug delivery is clear. Manipulation of the formulation allows the delivery profile to be customized and optimized to take advantage of both a rapid, initial input of drug into the skin (likely due to a transient period of supersaturation) and a slower, controlled release over an extended time from the residual film created thereafter.
Collapse
Affiliation(s)
- Kit Frederiksen
- a LEO Pharma A/S, Pharmaceutical Technologies , Ballerup , Denmark.,b Department of Pharmacy & Pharmacology , University of Bath , Bath , UK
| | - Richard H Guy
- b Department of Pharmacy & Pharmacology , University of Bath , Bath , UK
| | | |
Collapse
|
5
|
Koo J, Tyring S, Werschler WP, Bruce S, Olesen M, Villumsen J, Bagel J. Superior efficacy of calcipotriene and betamethasone dipropionate aerosol foam versus ointment in patients with psoriasis vulgaris--A randomized phase II study. J DERMATOL TREAT 2015; 27:120-7. [PMID: 26444907 PMCID: PMC4772687 DOI: 10.3109/09546634.2015.1083935] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: An aerosol foam formulation of fixed combination calcipotriene 0.005% (as hydrate; Cal) plus betamethasone dipropionate 0.064% (BD) was developed to improve psoriasis treatment. Objectives: To compare the efficacy and safety of Cal/BD aerosol foam with Cal/BD ointment after 4 weeks. Methods: In this Phase II, multicenter, investigator-blind, 4-week trial, adult patients with psoriasis vulgaris were randomized to Cal/BD aerosol foam, Cal/BD ointment, aerosol foam vehicle or ointment vehicle (3:3:1:1). The primary efficacy endpoint was the proportion of patients at week 4 who achieved treatment success (clear or almost clear with at least a two-step improvement) according to the physician’s global assessment of disease severity. Results: In total, 376 patients were randomized. At week 4, significantly more patients using Cal/BD aerosol foam achieved treatment success (54.6% versus 43.0% [ointment]; p = 0.025); mean modified (excluding the head, which was not treated) psoriasis area and severity index score was significantly different between Cal/BD aerosol foam and Cal/BD ointment (mean difference –0.6; p = 0.005). Rapid, continuous itch relief occurred with both active treatments. One adverse drug reaction was reported with Cal/BD aerosol foam (application site itch). Conclusions: Cal/BD aerosol foam demonstrates significantly greater efficacy and similar tolerability compared with Cal/BD ointment for psoriasis treatment.
Collapse
Affiliation(s)
- John Koo
- a Department of Dermatology , University of California , San Francisco , San Francisco , CA , USA
| | - Stephen Tyring
- b Department of Dermatology , University of Texas Health Science Center , Houston , TX , USA
| | | | - Suzanne Bruce
- d Suzanne Bruce and Associates, PA , Houston , TX , USA
| | | | | | - Jerry Bagel
- f Psoriasis Treatment Center of Central New Jersey , East Windsor , NJ , USA
| |
Collapse
|
6
|
Uva L, Miguel D, Pinheiro C, Antunes J, Cruz D, Ferreira J, Filipe P. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol 2012; 2012:561018. [PMID: 23213332 PMCID: PMC3508578 DOI: 10.1155/2012/561018] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/14/2012] [Accepted: 10/20/2012] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is a lifelong, chronic, and immune-mediated systemic disease, which affects approximately 1-3% of the Caucasian population. The different presentations of psoriasis require different approaches to treatment and appropriate prescriptions according to disease severity. The use of topical therapy remains a key component of the management of almost all psoriasis patients, and while mild disease is commonly treated only with topical agents, the use of topical therapy as adjuvant therapy in moderate-to-severe disease may also be helpful. This paper focuses on the cutaneous mechanisms of action of corticosteroids and on the currently available topical treatments, taking into account adverse effects, bioavailability, new combination treatments, and strategies to improve the safety of corticosteroids. It is established that the treatment choice should be tailored to match the individual patient's needs and his/her expectations, prescribing to each patient the most suitable vehicle.
Collapse
Affiliation(s)
- Luís Uva
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
- *Luís Uva:
| | - Diana Miguel
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Catarina Pinheiro
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Joana Antunes
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Diogo Cruz
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - João Ferreira
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Paulo Filipe
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| |
Collapse
|