1
|
Zhang Y, Chen Z, Guo J, Wan Q, Zhang Y, Li H, Rao H, Yang J, Xu P, Chen H, Wang M. Factor XII and prekallikrein promote microvascular inflammation and psoriasis in mice. Br J Pharmacol 2024; 181:3760-3778. [PMID: 38872396 DOI: 10.1111/bph.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is an autoimmune inflammatory skin disease, featuring microvascular abnormalities and elevated levels of bradykinin. Contact activation of Factor XII can initiate the plasma kallikrein-kinin cascade, producing inflammation and angioedema. The role of Factor XII in psoriasis is unknown. EXPERIMENTAL APPROACH The effects of deficiency of Factor XII or its enzymatic substrate, prekallikrein, were examined in the imiquimod-induced mouse model of psoriasis. Skin microcirculation was assessed using intravital confocal microscopy and laser Doppler flowmeter. A novel antibody blocking Factor XII activation was evaluated for psoriasis prevention. KEY RESULTS Expression of Factor XII was markedly up-regulated in human and mouse psoriatic skin. Genetic deletion of Factor XII or prekallikrein, attenuated imiquimod-induced psoriatic lesions in mice. Psoriatic induction increased skin microvascular blood perfusion, causing vasodilation, hyperpermeability and angiogenesis. It also promoted neutrophil-vascular interaction, inflammatory cytokine release and enhanced Factor XII / prekallikrein enzymatic activity with elevated bradykinin. Factor XII or prekallikrein deficiency ameliorated these microvascular abnormalities and abolished bradykinin increase. Antagonism of bradykinin B2 receptors reproduced the microvascular protection of Factor XII / prekallikrein deficiency, attenuated psoriatic lesions, and prevented protection by Factor XII / prekallikrein deficiency against psoriasis. Furthermore, treatment of mice with Factor XII antibody alleviated experimentally induced psoriasis and suppressed microvascular inflammation. CONCLUSION AND IMPLICATIONS Activation of Factor XII promoted psoriasis via prekallikrein-dependent formation of bradykinin, which critically mediated psoriatic microvascular inflammation. Inhibition of contact activation represents a novel therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Yurong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyan Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Life Science, Zhejiang Normal University, Jinhua City, China
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huihui Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Detection of microvascular changes in systemic sclerosis and other rheumatic diseases. Nat Rev Rheumatol 2021; 17:665-677. [PMID: 34561652 DOI: 10.1038/s41584-021-00685-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Morphological and functional analysis of the microcirculation are objective outcome measures that are recommended for use in the presence of clinical signs of altered peripheral blood flow (such as Raynaud phenomenon), which can occur in systemic sclerosis (SSc) and other autoimmune rheumatic diseases. Several advanced non-invasive tools are available for monitoring the microcirculation, including nailfold videocapillaroscopy, which is the best-studied and most commonly used method for distinguishing and quantifying microvascular morphological alterations in SSc. Nailfold videocapillaroscopy can also be used alongside laser Doppler techniques to assist in the early diagnosis and follow-up of patients with dermatomyositis or mixed connective tissue disease. Power Doppler ultrasonography, which has been used for many years to evaluate the vascularity of synovial tissue in rheumatoid arthritis, is another promising tool for the analysis of skin and nailbed capillary perfusion in other autoimmune rheumatic diseases. Other emerging methods include raster-scanning optoacoustic mesoscopy, which offers non-invasive high-resolution 3D visualization of capillaries and has been tested in psoriatic arthritis and SSc. The principle functions and operative characteristics of several non-invasive tools for analysing microvascular changes are outlined in this Review, and the clinical roles of validated or tested imaging methods are discussed for autoimmune rheumatic diseases.
Collapse
|
3
|
Schaap MJ, Chizari A, Knop T, Groenewoud HMM, van Erp PEJ, de Jong EMGJ, Steenbergen W, Seyger MMB. Perfusion measured by laser speckle contrast imaging as a predictor for expansion of psoriasis lesions. Skin Res Technol 2021; 28:104-110. [PMID: 34619003 PMCID: PMC9293292 DOI: 10.1111/srt.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/31/2021] [Indexed: 11/27/2022]
Abstract
Background Skin microvasculature changes are crucial in psoriasis development and correlate with perfusion. The noninvasive Handheld Perfusion Imager (HAPI) examines microvascular skin perfusion in large body areas using laser speckle contrast imaging (LSCI). Objectives To (i) assess whether increased perilesional perfusion and perfusion inhomogeneity are predictors for expansion of psoriasis lesions and (ii) assess feasibility of the HAPI system in a mounted modality. Methods In this interventional pilot study in adults with unstable plaque psoriasis, HAPI measurements and color photographs were performed for lesions present on one body region at week 0, 2, 4, 6 and 8. The presence of increased perilesional perfusion and perfusion inhomogeneity was determined. Clinical outcome was categorized as increased, stable or decreased lesion surface between visits. Patient feedback was collected on a 10‐point scale. Results In total, 110 lesions with a median follow‐up of 6 (IQR 6.0) weeks were assessed in 6 patients with unstable plaque psoriasis. Perfusion data was matched to 281 clinical outcomes after two weeks. A mixed multinomial logistic regression model revealed a predictive value of perilesional increased perfusion (OR 9.90; p < 0.001) and perfusion inhomogeneity (OR 2.39; p = 0.027) on lesion expansion after two weeks compared to lesion stability. HAPI measurements were considered fast, patient‐friendly and important by patients. Conclusion Visualization of increased perilesional perfusion and perfusion inhomogeneity by noninvasive whole field LSCI holds potential for prediction of psoriatic lesion expansion. Furthermore, the HAPI is a feasible and patient‐friendly tool.
Collapse
Affiliation(s)
- Mirjam J Schaap
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ata Chizari
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Hans M M Groenewoud
- Department for Health Evidence, Radboud University, Nijmegen, The Netherlands
| | - Piet E J van Erp
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elke M G J de Jong
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marieke M B Seyger
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Chizari A, Schaap MJ, Knop T, Boink YE, Seyger MMB, Steenbergen W. Handheld versus mounted laser speckle contrast perfusion imaging demonstrated in psoriasis lesions. Sci Rep 2021; 11:16646. [PMID: 34404886 PMCID: PMC8371022 DOI: 10.1038/s41598-021-96218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Enabling handheld perfusion imaging would drastically improve the feasibility of perfusion imaging in clinical practice. Therefore, we examine the performance of handheld laser speckle contrast imaging (LSCI) measurements compared to mounted measurements, demonstrated in psoriatic skin. A pipeline is introduced to process, analyze and compare data of 11 measurement pairs (mounted-handheld LSCI modes) operated on 5 patients and various skin locations. The on-surface speeds (i.e. speed of light beam movements on the surface) are quantified employing mean separation (MS) segmentation and enhanced correlation coefficient maximization (ECC). The average on-surface speeds are found to be 8.5 times greater in handheld mode compared to mounted mode. Frame alignment sharpens temporally averaged perfusion maps, especially in the handheld case. The results show that after proper post-processing, the handheld measurements are in agreement with the corresponding mounted measurements on a visual basis. The absolute movement-induced difference between mounted-handheld pairs after the background correction is [Formula: see text] (mean ± std, [Formula: see text]), with an absolute median difference of [Formula: see text]. Realization of handheld LSCI facilitates measurements on a wide range of skin areas bringing more convenience for both patients and medical staff.
Collapse
Affiliation(s)
- Ata Chizari
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mirjam J Schaap
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Yoeri E Boink
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Multi-Modality Medical Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Marieke M B Seyger
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
5
|
Yang CC, Yen YY, Hsu CK, Cheng NY, Tzeng SY, Chou SJ, Chang JM, Tseng SH. Investigation of water bonding status of normal and psoriatic skin in vivo using diffuse reflectance spectroscopy. Sci Rep 2021; 11:8901. [PMID: 33903688 PMCID: PMC8076238 DOI: 10.1038/s41598-021-88530-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Psoriasis affects more than 125 million people worldwide, and the diagnosis and treatment efficacy evaluation of the disease mainly rely on clinical assessments that could be subjective. Our previous study showed that the skin erythema level could be quantified using diffuse reflectance spectroscopy (DRS), and the hemoglobin concentration of most psoriatic lesion was higher than that of its adjacent uninvolved skin. While the compromised epidermal barrier function has been taken as the major cause of clinical manifestation of skin dryness and inflammation of psoriasis, very few methods can be used to effectively evaluate this function. In this study, we investigate the near infrared spectroscopic features of psoriatic (n = 21) and normal (n = 21) skin that could link to the epidermal barrier function. From the DRS measurements, it was found that the water bonding status and light scattering properties of psoriasis are significantly different from those of uninvolved or normal skin. The connection between these parameters to the epidermal barrier function and morphology will be discussed. Our results suggest that objective evaluation of epidermal barrier function of psoriasis could be achieved using a simple DRS system.
Collapse
Affiliation(s)
- Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C
| | - Yun-Yo Yen
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C..
| | - Nan-Yu Cheng
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C
| | - Shih-Yu Tzeng
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C
| | - Shih-Jay Chou
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300, Taiwan, R.O.C
| | - Jun-Ming Chang
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300, Taiwan, R.O.C
| | - Sheng-Hao Tseng
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C..
| |
Collapse
|
6
|
Owczarczyk-Saczonek A, Purzycka-Bohdan D, Nedoszytko B, Reich A, Szczerkowska-Dobosz A, Bartosiñska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasiecka A, Kalinowski L, Krasowska D, Radulska A, Reszka E, Samotij D, Słominski A, Słominski R, Sobalska-Kwapis M, Stawczyk-Macieja M, Strapagiel D, Szczêch J, Żmijewski M, Nowicki RJ. Pathogenesis of psoriasis in the "omic" era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postepy Dermatol Alergol 2020; 37:452-467. [PMID: 32994764 PMCID: PMC7507147 DOI: 10.5114/ada.2020.98284] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a systemic disease that is strictly connected with metabolic disorders (insulin resistance, atherogenic dyslipidemia, arterial hypertension, and cardiovascular diseases). It occurs more often in patients with a more severe course of the disease. Obesity is specially an independent risk factor and it is associated with a worse treatment outcome because of the high inflammatory activity of visceral fatty tissue and the production of inflammatory mediators involved in the development of both psoriasis and metabolic disorders. However, in psoriasis the activation of the Th17/IL-17 and the abnormalities in the Th17/Treg balance axis are observed, but this pathomechanism does not fully explain the frequent occurrence of metabolic disorders. Therefore, there is a need to look for better biomarkers in the diagnosis, prognosis and monitoring of concomitant disorders and therapeutic effects in psoriasis. In addition, the education on the use of a proper diet as a prophylaxis for the development of the above disorders is an important element of holistic care for a patient with psoriasis. Diet may affect gene expression due to epigenetic modification which encompasses interactions of environment, nutrition and diseases. Patients with psoriasis should be advised to adopt proper diet and dietician support.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Chair and Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Dorota Purzycka-Bohdan
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Bogusław Nedoszytko
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Aneta Szczerkowska-Dobosz
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Bartosiñska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Batycka-Baran
- Chair and Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Czajkowski
- Chair and Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | | | - Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
- Gdansk University of Technology, Gdansk, Poland
| | - Dorota Krasowska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Adrianna Radulska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Dominik Samotij
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Andrzej Słominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, USA
| | - Radomir Słominski
- Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | | | - Marta Stawczyk-Macieja
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | | | - Justyna Szczêch
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Michał Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Roman J. Nowicki
- Chair and Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Samotij D, Nedoszytko B, Bartosińska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasienicka A, Krasowska D, Kalinowski L, Macieja-Stawczyk M, Nowicki RJ, Owczarczyk-Saczonek A, Płoska A, Purzycka-Bohdan D, Radulska A, Reszka E, Siekierzycka A, Słomiński A, Słomiński R, Sobalska-Kwapis M, Strapagiel D, Szczerkowska-Dobosz A, Szczęch J, Żmijewski M, Reich A. Pathogenesis of psoriasis in the "omic" era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol 2020; 37:135-153. [PMID: 32489346 PMCID: PMC7262814 DOI: 10.5114/ada.2020.94832] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Dominik Samotij
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Bartosińska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Batycka-Baran
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venereology, Faculty of Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Magdalena Górecka-Sokołowska
- Department of Dermatology, Sexually Transmitted Disorders and Immunodermatology, Jurasz University Hospital No. 1, Bydgoszcz, Poland
| | - Anna Janaszak-Jasienicka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Marta Macieja-Stawczyk
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Andrzej Słomiński
- Department of Dermatology, Birmingham, AL, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| | - Radomir Słomiński
- Department of Medicine, Division of Rheumatology, University of Alabama, Birmingham, AL, USA
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Justyna Szczęch
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Michał Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
8
|
Pereda MDCV, Dieamant G, Nogueira C, Eberlin S, Facchini G, Mussi L, Polezel MA, Martins-Oliveira D, Rosa PTV, Di Stasi LC. Sterol-standardized phytopharmaceutical from ground cherry: Corticoid-like properties on human keratinocytes and fibroblasts and its effects in a randomized double-blind placebo-controlled clinical trial. J Cosmet Dermatol 2019; 18:1516-1528. [PMID: 30597728 DOI: 10.1111/jocd.12851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Topical corticosteroids have been the most commonly prescribed drugs to treat skin inflammation, but their uses can lead to several adverse effects. Nowadays, new pharmacological strategies have been evaluated to improve dermatologic efficacy and reduce adverse effects, including natural products. OBJECTIVES The aim of this study was to evaluate and compare the effects of a plant sterol standardized supercritical CO2 phytopharmaceutical of Physalis angulata L. with hydrocortisone on the immune and inflammatory mediators, and skin repair components production. Moreover, we studied effects of both products on the skin microcirculation and temperature in a double-blind placebo-controlled clinical trial. METHODS Both products were evaluated on the immune (IL-6, IL-10, INF-γ, TNF-α, and IL-1α), inflammatory (COX-2, LOX, PLA2 , PGE2 , LTB4 , histamine, and NF-κB), and repair components (TGF-β, GM-CSF, collagen, and GAG) production on human keratinocytes and fibroblast in non-stimulated and LPS-stimulated conditions. Indeed, in a randomized double-blind placebo-controlled clinical trial, we evaluated the effects of the both creams on the skin microcirculation and temperature using laser Doppler and infrared thermometer, respectively. RESULTS Physalis angulata acted on the skin, modulating immune status and inflammatory response producing corticoid-like effects, but different of hydrocortisone, increased skin repair factors. The effects of phytopharmaceutical cream in the clinical trial promoted a better reduction in skin microcirculation and temperature than hydrocortisone. CONCLUSIONS Taken together, the results indicate that sterol standardized CO2 supercritical preparation of P angulata is a new and innovative phytopharmaceutical with multiple pharmacological effects potentially useful as human skin protective product, particularly against cutaneous inflammatory disorders.
Collapse
Affiliation(s)
| | - Gustavo Dieamant
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, Brazil
| | - Cecília Nogueira
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, Brazil
| | - Samara Eberlin
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, Brazil
| | - Gustavo Facchini
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, Brazil
| | - Lilian Mussi
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, Brazil
| | - Marcio A Polezel
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, Brazil
| | | | - Paulo T V Rosa
- Department of Physical Chemistry, State University of Campinas (Unicamp), Campinas, Brazil
| | - Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu, Brazil
| |
Collapse
|
9
|
Md Yusof MY, Britton J, Edward S, Hensor EMA, Goodfield MJ, Laws PM, Emery P, Wittmann M, Vital EM. Validity and sensitivity to change of laser Doppler imaging as a novel objective outcome measure for cutaneous lupus erythematosus. Lupus 2019; 28:1320-1328. [PMID: 31522626 DOI: 10.1177/0961203319873977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objectives of this study were to assess the reliability of a novel objective outcome measure, laser Doppler imaging (LDI), its validity against skin biopsy histology and other clinical instruments, including localized cutaneous lupus disease area and severity index (L-CLASI) and visual analogue scale (VAS) score of photographs, and its responsiveness to clinical change with therapy. METHODS A prospective observational cohort study was conducted in 30 patients with active cutaneous lupus erythematosus (CLE). At baseline and 3 months, disease activity was assessed using L-CLASI and a high resolution LDI system by two assessors. Skin biopsy was scored as 0 = non-active, 1 = mild activity and 2 = active. Photographs were assessed by two clinicians using 100 mm VAS. Inter-rater reliability was analyzed using Bland-Altman limits of agreement. Correlation between histology and LDI, L-CLASI and VAS and sensitivity to change of LDI with physician subjective assessment of change (PSAC) at 3 months were analyzed using Kendall's tau-a. RESULTS Of 30 patients with CLE, 28 (93%) were female, mean (SD) age 48.4 (11.5) y, 25 (83%) were Caucasians, 25 (83%) had concurrent systemic lupus erythematosus and 16 (53%) were smokers. CLE subtypes were acute = 9, subacute = 8 and chronic = 13. Inter-rater agreement for LDI was fair but for VAS score of photographs was poor. In 20 patients with biopsy, correlation with histology was better for LDI (tau-a = 0.53) than L-CLASI (tau-a = 0.26) (difference = 0.27; 90% CI 0.05-0.49) or VAS score of photographs (tau-a = 0.17) (difference = 0.36; 90% CI 0.04-0.68). There was a moderate correlation between PSAC score and change in LDI (tau-a = 0.56; 90% CI 0.38-0.74; p < 0.001, n = 15). CONCLUSION LDI provides a reliable, valid and responsive quantitative measure of inflammation in CLE. It has a better correlation with histology compared to clinical instruments. LDI provides an objective outcome measure for clinical trials.
Collapse
Affiliation(s)
- M Y Md Yusof
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - J Britton
- Department of Medical Physics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - S Edward
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds UK
| | - E M A Hensor
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - M J Goodfield
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Dermatology, Leeds Teaching Hospitals NHS Trust, Leeds UK
| | - P M Laws
- Department of Dermatology, Leeds Teaching Hospitals NHS Trust, Leeds UK
| | - P Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - M Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - E M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
10
|
Berekméri A, Tiganescu A, Alase AA, Vital E, Stacey M, Wittmann M. Non-invasive Approaches for the Diagnosis of Autoimmune/Autoinflammatory Skin Diseases-A Focus on Psoriasis and Lupus erythematosus. Front Immunol 2019; 10:1931. [PMID: 31497014 PMCID: PMC6712514 DOI: 10.3389/fimmu.2019.01931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
The traditional diagnostic gold standard for inflammatory skin lesions of unclear etiology is dermato-histopathology. As this approach requires an invasive skin biopsy, biopsy processing and analysis by specialized histologists, it is a resource intensive approach requiring trained healthcare professionals. In many health care settings access to this diagnostic approach can be difficult and outside emergency cases will usually take several weeks. This scenario leads to delayed or inappropriate treatment given to patients. With dramatically increased sensitivity of a range of analysis systems including mass spectrometry, high sensitivity, multiplex ELISA based systems and PCR approaches we are now able to "measure" samples with unprecedented sensitivity and accuracy. Other important developments include the long-term monitoring of parameters using microneedle approaches and the improvement in imaging systems such as optical coherence tomography. In this review we will focus on recent achievements regarding measurements from non-invasive sampling, in particular from plucked hair and skin tape-strips which seem well suited for the diagnosis of lupus erythematosus and psoriatic inflammation, respectively. While these approaches will not replace clinical observation-they can contribute to improved subgroup diagnosis, stratified therapeutic approaches and have great potential for providing molecular and mechanistic insight in to inflammatory skin diseases.
Collapse
Affiliation(s)
- Anna Berekméri
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Ana Tiganescu
- Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Adewonuola A. Alase
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Edward Vital
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Martin Stacey
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Miriam Wittmann
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
11
|
Hanssen SCA, Keijsers RRMC, Hendriks AGM, Seyger MMB, van der Vleuten CJM, van de Kerkhof PCM. The dynamics of endothelial changes in vivo following standardized skin injury. Skin Res Technol 2019; 25:618-624. [PMID: 30942508 DOI: 10.1111/srt.12693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular changes, that is, functional and cellular endothelial changes, are of essential importance in healing. Alongside these vascular changes, inflammatory factors and hypoxia may play an important role in recovery. OBJECTIVES To investigate the dynamics of functional and cellular endothelial changes and hypoxia in vivo following standardized skin damage caused by tape stripping. METHODS Vascular changes (endothelial cell proliferation, vascular network size, vessel diameter) and hypoxia-inducible factor-1α were examined immunohistochemically using a CD31/Ki67 double staining and HIF-1α single staining. Cutaneous perfusion was evaluated using the Twente Optical Perfusion Camera (TOPCam). RESULTS The initial phase is seen to be dominated by endothelial cell proliferation, HIF-1α expression, and vasodilatation. Cutaneous perfusion intensity is particularly increased in the first 16 hours. The late phase of recovery (after 72 hours) is characterized by a peak of expansion of the vascular network and a second peak of endothelial cell proliferation and HIF-1α expression. CONCLUSION Endothelial cell proliferation and HIF-1α expression appear to be (strongly) related, having maximum levels at 16 hours and 72 hours. Angiogenesis and HIF-1α expression are not continuous processes, but rather occur intermittently.
Collapse
|
12
|
Kerkhof PLM, Khamaganova I. Sex-Specific Cardiovascular Comorbidities with Associations in Dermatologic and Rheumatic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:489-509. [DOI: 10.1007/978-3-319-77932-4_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lal C, Leahy MJ. An Updated Review of Methods and Advancements in Microvascular Blood Flow Imaging. Microcirculation 2016; 23:345-63. [DOI: 10.1111/micc.12284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Cerine Lal
- Department of Applied Physics; Tissue Optics and Microcirculation Imaging; National University of Ireland; Galway Ireland
| | - Martin J Leahy
- Department of Applied Physics; Tissue Optics and Microcirculation Imaging; National University of Ireland; Galway Ireland
- Royal College of Surgeons in Ireland; Dublin Ireland
| |
Collapse
|
14
|
Pilot Study of Laser Doppler Measurement of Flow Variability in the Microcirculation of the Palatal Mucosa. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5749150. [PMID: 27340663 PMCID: PMC4908244 DOI: 10.1155/2016/5749150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/18/2022]
Abstract
Background. Histopathological alterations can arise when the denture-supporting mucosa experiences microbial and mechanical stress through the denture base and diagnosis of these diseases usually follows microvascular changes. Microcirculation measurement could allow for detection of such dysfunction and aid in the early diagnosis of palatal mucosa pathologies. Materials and Methods. We tested the sensitivity of laser Doppler for measuring the microcirculation of the palatal mucosa, assessing the median raphe (MR), Schroeder area (SA), and retroincisive papilla (RP). A Doppler PeriFlux 5000 System, containing a laser diode, was used. 54 healthy participants were recruited. We compare the measurements of PU (perfusion unit) using ANOVA test. Results. The numerical values for palatal mucosa blood flow differed significantly among the anatomical areas (p = 0.0167). The mean value of Schroeder area was 92.6 (SD: 38.4) and was significantly higher than the retroincisive papilla (51.9) (SD: 20.2) (p < 0.05), which in turn was higher than that of median raphe (31.9) (SD: 24.2) (p < 0.0001). Conclusion. Schroeder area appeared to have the greatest sensitivity, and vascular flow variability among individuals was also greatest in this region. We suggest that analysis of blood stream modification with laser Doppler of the palatal mucosa can help to detect onset signs of pathological alterations.
Collapse
|
15
|
Akkurt ZM, Gümüş H, Aktürk A, Uçmak D, Türkcü FM, Gürsel Özkurt Z, Durmaz MS, Bilici A. Evaluation of orbital arteries with colour Doppler ultrasonography in patients with psoriasis. Clin Exp Dermatol 2015; 40:507-12. [DOI: 10.1111/ced.12625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Z. M. Akkurt
- Department of Dermatology; University Faculty of Medicine; Diyarbakir Turkey
| | - H. Gümüş
- Department of Radiology; University Faculty of Medicine; Diyarbakir Turkey
| | - A. Aktürk
- Department of Radiology; University Faculty of Medicine; Diyarbakir Turkey
| | - D. Uçmak
- Department of Dermatology; University Faculty of Medicine; Diyarbakir Turkey
| | - F. M. Türkcü
- Department of Ophthalmology; University Faculty of Medicine; Diyarbakir Turkey
| | - Z. Gürsel Özkurt
- Department of Ophthalmology; University Faculty of Medicine; Diyarbakir Turkey
| | - M. S. Durmaz
- Department of Radiology; University Faculty of Medicine; Diyarbakir Turkey
| | - A. Bilici
- Department of Radiology; University Faculty of Medicine; Diyarbakir Turkey
| |
Collapse
|
16
|
Hendriks AGM, van de Kerkhof PCM, de Jonge CS, Lucas M, Steenbergen W, Seyger MMB. Clearing of psoriasis documented by laser Doppler perfusion imaging contrasts remaining elevation of dermal expression levels of CD31. Skin Res Technol 2014; 21:340-5. [DOI: 10.1111/srt.12198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. G. M. Hendriks
- Department of Dermatology; Radboud University Medical Center; Enschede The Netherlands
| | | | - C. S. de Jonge
- Biomedical Photonic Imaging; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - M. Lucas
- Biomedical Photonic Imaging; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - W. Steenbergen
- Biomedical Photonic Imaging; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede The Netherlands
| | - M. M. B. Seyger
- Department of Dermatology; Radboud University Medical Center; Enschede The Netherlands
| |
Collapse
|
17
|
Ayata RE, Bouhout S, Auger M, Pouliot R. Study of in vitro capillary-like structures in psoriatic skin substitutes. Biores Open Access 2014; 3:197-205. [PMID: 25371856 PMCID: PMC4215329 DOI: 10.1089/biores.2014.0022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is one of the important hallmarks of psoriasis. The extension of the superficial microvascular structure and activated pro-angiogenic mediators in psoriasis seem to be important factors involved in the pathology. According to the changes of superficial microvasculature in psoriatic lesions, anti-angiogenic treatment could be a promising therapeutic strategy for psoriasis. The aim of this study was to construct an in vitro vascularized psoriatic skin substitute for fundamental research. Psoriatic fibroblasts and keratinocytes were isolated from psoriatic plaque biopsies, while healthy fibroblasts and keratinocytes, as well as microvascular endothelial cells, were isolated from healthy skin biopsies of cosmetic breast surgery. Psoriatic and healthy skin substitutes with and without endothelial cells were produced using the self-assembly approach. Afterward the substitutes were examined by histology, immunofluorescence studies, and three-dimensional (3D) confocal microscopy. Histological analysis and immunofluorescence staining of specific markers for endothelial cells (von Willebrand, PECAM-1 [CD31], and VE-cadherin [CD144]) and basement membrane component (collagen IV) demonstrated that endothelial cells have the ability to form capillary-like tubes. Moreover, the 3D branched structure of the capillary-like structures and an eagle eye view of them were observed by confocal microscopy. Also the semiquantification of capillary-like tubes (CLTs) was carried out with a 3D eagle eye view of substitutes, and more CLTs were observed in psoriatic substitutes. These results suggest that it is possible to observe 3D capillary-like structures in the self-assembled psoriatic skin substitutes, which could become a good in vitro testing model for anti-angiogenic drug research, and facilitate the study of this complex pathology, which links angiogenesis to its development.
Collapse
Affiliation(s)
- Raif Eren Ayata
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Université Laval , Québec, Canada . ; Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada . ; Faculté de Pharmacie, Université Laval , Québec, Canada
| | - Sara Bouhout
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Université Laval , Québec, Canada . ; Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada
| | - Michèle Auger
- Département de Chimie, PROTEO, CERMA, Université Laval , Québec, Canada
| | - Roxane Pouliot
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Université Laval , Québec, Canada . ; Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada . ; Faculté de Pharmacie, Université Laval , Québec, Canada
| |
Collapse
|