Barzelay O, Furst M, Barak O. A New Approach to Model Pitch Perception Using Sparse Coding.
PLoS Comput Biol 2017;
13:e1005338. [PMID:
28099436 PMCID:
PMC5308863 DOI:
10.1371/journal.pcbi.1005338]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 02/14/2017] [Accepted: 12/31/2016] [Indexed: 11/18/2022] Open
Abstract
Our acoustical environment abounds with repetitive sounds, some of which are related to pitch perception. It is still unknown how the auditory system, in processing these sounds, relates a physical stimulus and its percept. Since, in mammals, all auditory stimuli are conveyed into the nervous system through the auditory nerve (AN) fibers, a model should explain the perception of pitch as a function of this particular input. However, pitch perception is invariant to certain features of the physical stimulus. For example, a missing fundamental stimulus with resolved or unresolved harmonics, or a low and high-level amplitude stimulus with the same spectral content-these all give rise to the same percept of pitch. In contrast, the AN representations for these different stimuli are not invariant to these effects. In fact, due to saturation and non-linearity of both cochlear and inner hair cells responses, these differences are enhanced by the AN fibers. Thus there is a difficulty in explaining how pitch percept arises from the activity of the AN fibers. We introduce a novel approach for extracting pitch cues from the AN population activity for a given arbitrary stimulus. The method is based on a technique known as sparse coding (SC). It is the representation of pitch cues by a few spatiotemporal atoms (templates) from among a large set of possible ones (a dictionary). The amount of activity of each atom is represented by a non-zero coefficient, analogous to an active neuron. Such a technique has been successfully applied to other modalities, particularly vision. The model is composed of a cochlear model, an SC processing unit, and a harmonic sieve. We show that the model copes with different pitch phenomena: extracting resolved and non-resolved harmonics, missing fundamental pitches, stimuli with both high and low amplitudes, iterated rippled noises, and recorded musical instruments.
Collapse