1
|
Nikiforov VS, Akleyev AV. mRNA Expression of GATA3, FOXP3, TBX21, STAT3, NFKB1, and MAPK8 Transcription Factors in Humans and Their Cooperative Interactions Long-Term after Exposure to Chronic Radiation. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
The results of mRNA expression of the GATA3, FOXP3, TBX21, STAT3, NFKB1, and MAPK8 transcription factors in peripheral blood cells of 264 residents of the Techa riverside villages of the Chelyabinsk and Kurgan regions, who were affected by chronic low dose-rate exposure in the 1950s, are shown. The range of individual doses to the red bone marrow due to external gamma exposure and 90Sr was 77.8–3507.1 mGy, and the mean dose was 706.3±46.3 mGy. It has been found that changes in the transcriptional response of the cell occur at the molecular level in the long term after chronic exposure. A modified expression of the immunoregulatory genes NFKB1 and MAPK8 in the peripheral blood cells of exposed people was found. A comparative analysis of the interaction of the studied mRNAs demonstrated the presence of a link between the MAPK8 and NFKB1 genes in the group of chronically exposed individuals. The results obtained may indicate the involvement of these transcription factors in the impairment of the immune response in the exposed population.
Collapse
|
2
|
Xu J, Liu D, Zhao D, Jiang X, Meng X, Jiang L, Yu M, Zhang L, Jiang H. Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sci 2022; 302:120644. [PMID: 35588864 DOI: 10.1016/j.lfs.2022.120644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
Cellular senescence refers to the permanent arrest of cell cycle caused by intrinsic and/or extrinsic stressors including oncogene activation, irradiation, DNA damage, oxidative stress, and certain cytokines (including senescence associated secretory phenotype). Cellular senescence is an important factor in aging. Accumulation of senescent cells has been implicated in the causation of various age-related organ disorders, tissue dysfunction, and chronic diseases. It is widely accepted that the biological effects triggered by low-dose radiation (LDR) are different from those caused by high-dose radiation. Experimental evidence suggests that LDR may promote growth and development, enhance longevity, induce embryo production, and delay the progression of chronic diseases. The underlying mechanisms of these effects include modulation of immune response, stimulation of hematopoietic system, antioxidative effect, reduced DNA damage and improved ability for DNA damage repair. In this review, we discuss the possible mechanisms by which LDR prevents senescence and aging from the perspectives of inhibiting cellular senescence and promoting the removal of senescent cells. We review a wide broad of evidence about the beneficial impact of LDR in senescence and aging models (including cardiovascular diseases, neurological diseases, arthritis and osteoporosis, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis) to highlight the potential value of LDR in preventing aging and age-related diseases. However, there is no consensus on the effect of LDR on human health, and several important aspects require further investigation.
Collapse
Affiliation(s)
- Jing Xu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Dandan Liu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Lili Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Meina Yu
- Department of Special Clinic, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Long Zhang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China.
| |
Collapse
|
3
|
Rodina AV, Semochkina YP, Vysotskaya OV, Romantsova AN, Strepetov AN, Moskaleva EY. Low dose gamma irradiation pretreatment modulates the sensitivity of CNS to subsequent mixed gamma and neutron irradiation of the mouse head. Int J Radiat Biol 2021; 97:926-942. [PMID: 34043460 DOI: 10.1080/09553002.2021.1928787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
ABSTRACТPurpose: To explore if the total body γ-irradiation at a dose of 0.1 Gy 7 days prior to acute mixed γ, n-irradiation of the head at the dose of 1 Gy can reduce the harmful effects of neutron irradiation on the hippocampal functions, neuroinflammation and neurogenesis.Materials and methods: Mice were exposed to γ-radiation alone, mixed γ,n-radiation or combined γ-rays and γ,n-radiation 7 days after γ-irradiation. Two months post-irradiation, mice were tested in Open Field and in the Morris water maze. The content of microglia, astrocytes, proliferating cells and cytokines TGF-β, TNF-α, IL-1β, GFAP levels, hippocampal BDNF, NT-3, NT-4, NGF mRNA expression were evaluated.Results: Two months after combined irradiation, we observed impaired hippocampus-dependent cognition, which was not detected in mice exposed to γ,n-irradiation. Combined exposure and γ,n-irradiation led to a significant increase in the level of activated microglia and astrocytes in the brains. The level of pro- and anti-inflammatory cytokines in the brain and hippocampal neurotrophine's genes changed differenly after the combined exposure and γ,n-irradiation. The quantity of DCX-positive cells was reduced after γ,n-irradiation exposer alone, but increased after combined irradiation.Conclusions: Our results indicate radio-adaptive responses in brains of mice that were exposed to low-dose gamma irradiation 7 days prior to acute 1 Gy γ,n-irradiation.
Collapse
Affiliation(s)
- Alla V Rodina
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
- Chair of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Yulia P Semochkina
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Olga V Vysotskaya
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Anastasia N Romantsova
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Aleksandr N Strepetov
- Kurchatov Nuclear Physics Complex, NRC 'Kurchatov Institute', Moscow, Russian Federation
| | - Elizaveta Y Moskaleva
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| |
Collapse
|
4
|
Chen Z, Wu Z, Muluh TA, Fu S, Wu J. Effect of low-dose total-body radiotherapy on immune microenvironment. Transl Oncol 2021; 14:101118. [PMID: 34020371 PMCID: PMC8142085 DOI: 10.1016/j.tranon.2021.101118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
LTBI (low-dose total-body irradiation) can change the immune microenvironment of tumor. LTBI (low-dose total-body irradiation) can regulate a variety of signal pathways (such as nuclear factor-κ B, p38 / MAPK, c-jun), thereby enhancing the expression and function of immune cells in the body, and it may even change the immune microenvironment of human body through an unknown signal pathway, such as enhancing the connection between PD-1 and PD-L1 and promoting the low expression of CTLA4. LTBI (low-dose total-body irradiation) can stably stimulate the immune function of cancer patients. LTBI (low-dose total-body irradiation) can be widely used as a new comprehensive anti-tumor therapy.
The history of low-dose total-body irradiation (LTBI) as a means of radiotherapy for treating malignant tumors can be traced back to the 1920s. Despite this very low total dose, LTBI can induce long-term remissions. Tumor cells are known to change and maintain their own survival and development conditions through autocrine and paracrine signaling. LTBI can change the tumor microenvironment, enhance the infiltration of activated T cells, and trigger inflammatory processes. LTBI-mediated immune response can exert systemic long-term anti-tumor effects, and can induce tumor regression at the primary site and metastatic sites. With a continuous improvement in the anti-tumor immune microenvironment in the field of tumor therapy, LTBI provides more choices to comprehensively treat of tumors. The present study aimed to explore the experimental research mechanism of LTBI and immune microenvironment, and discuss the difficulties and development prospects of applying LTBI to tumor treatment.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zhouxue Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tobias Achu Muluh
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China; Key Laboratory of Nuclear Medicine and Molecular Imaging, Sichuan Province, China.
| |
Collapse
|
5
|
Laiakis EC, Shuryak I, Deziel A, Wang YW, Barnette BL, Yu Y, Ullrich RL, Fornace AJ, Emmett MR. Effects of Low Dose Space Radiation Exposures on the Splenic Metabolome. Int J Mol Sci 2021; 22:3070. [PMID: 33802822 PMCID: PMC8002539 DOI: 10.3390/ijms22063070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Future space missions will include a return to the Moon and long duration deep space roundtrip missions to Mars. Leaving the protection that Low Earth Orbit provides will unavoidably expose astronauts to higher cumulative doses of space radiation, in addition to other stressors, e.g., microgravity. Immune regulation is known to be impacted by both radiation and spaceflight and it remains to be seen whether prolonged effects that will be encountered in deep space can have an adverse impact on health. In this study, we investigated the effects in the overall metabolism of three different low dose radiation exposures (γ-rays, 16O, and 56Fe) in spleens from male C57BL/6 mice at 1, 2, and 4 months after exposure. Forty metabolites were identified with significant enrichment in purine metabolism, tricarboxylic acid cycle, fatty acids, acylcarnitines, and amino acids. Early perturbations were more prominent in the γ irradiated samples, while later responses shifted towards more prominent responses in groups with high energy particle irradiations. Regression analysis showed a positive correlation of the abundance of identified fatty acids with time and a negative association with γ-rays, while the degradation pathway of purines was positively associated with time. Taken together, there is a strong suggestion of mitochondrial implication and the possibility of long-term effects on DNA repair and nucleotide pools following radiation exposure.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY 10032, USA;
| | - Annabella Deziel
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
| | - Yi-Wen Wang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
| | - Brooke L. Barnette
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.L.B.); (Y.Y.); (M.R.E.)
| | - Yongjia Yu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.L.B.); (Y.Y.); (M.R.E.)
| | | | - Albert J. Fornace
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA; (A.D.); (Y.-W.W.); (A.J.F.J.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Mark R. Emmett
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.L.B.); (Y.Y.); (M.R.E.)
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines 2021; 9:biomedicines9030293. [PMID: 33805626 PMCID: PMC8000639 DOI: 10.3390/biomedicines9030293] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
A dose-response relationship to stressors, according to the hormesis theory, is characterized by low-dose stimulation and high-dose inhibition. It is non-linear with a low-dose optimum. Stress responses by cells lead to adapted vitality and fitness. Physical stress can be exerted through heat, radiation, or physical exercise. Chemical stressors include reactive species from oxygen (ROS), nitrogen (RNS), and carbon (RCS), carcinogens, elements, such as lithium (Li) and silicon (Si), and metals, such as silver (Ag), cadmium (Cd), and lead (Pb). Anthropogenic chemicals are agrochemicals (phytotoxins, herbicides), industrial chemicals, and pharmaceuticals. Biochemical stress can be exerted through toxins, medical drugs (e.g., cytostatics, psychopharmaceuticals, non-steroidal inhibitors of inflammation), and through fasting (dietary restriction). Key-lock interactions between enzymes and substrates, antigens and antibodies, antigen-presenting cells, and cognate T cells are the basics of biology, biochemistry, and immunology. Their rules do not obey linear dose-response relationships. The review provides examples of biologic stressors: oncolytic viruses (e.g., immuno-virotherapy of cancer) and hormones (e.g., melatonin, stress hormones). Molecular mechanisms of cellular stress adaptation involve the protein quality control system (PQS) and homeostasis of proteasome, endoplasmic reticulum, and mitochondria. Important components are transcription factors (e.g., Nrf2), micro-RNAs, heat shock proteins, ionic calcium, and enzymes (e.g., glutathion redox enzymes, DNA methyltransferases, and DNA repair enzymes). Cellular growth control, intercellular communication, and resistance to stress from microbial infections involve growth factors, cytokines, chemokines, interferons, and their respective receptors. The effects of hormesis during evolution are multifarious: cell protection and survival, evolutionary flexibility, and epigenetic memory. According to the hormesis theory, this is true for the entire biosphere, e.g., archaia, bacteria, fungi, plants, and the animal kingdoms.
Collapse
|
7
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 2018; 9:14692-14722. [PMID: 29581875 PMCID: PMC5865701 DOI: 10.18632/oncotarget.24461] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.
Collapse
Affiliation(s)
- Franco Cortese
- Biogerontology Research Foundation, London, UK
- Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andreyan Osipov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Jakub Stefaniak
- Biogerontology Research Foundation, London, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Alexey Moskalev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Jane Schastnaya
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Charles Cantor
- Boston University, Department of Biomedical Engineering, Boston, MA, USA
| | - Alexander Aliper
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Laboratory of Bioinformatics, D. Rogachev Federal Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Polina Mamoshina
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Computer Science Department, University of Oxford, Oxford, UK
| | - Igor Ushakov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Alex Sapetsky
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Quentin Vanhaelen
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Irina Alchinova
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Space Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail Karganov
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Olga Kovalchuk
- Canada Cancer and Aging Research Laboratories, Ltd., Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ruth Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Andrey Shtemberg
- Laboratory of Extreme Physiology, Institute of Medical and Biological Problems RAS, Moscow, Russia
| | - Marjan Moreels
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Evgeny Izumchenko
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, Baltimore, MD, USA
| | - João Pedro de Magalhães
- Biogerontology Research Foundation, London, UK
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Artem V. Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | | | - Afshin Beheshti
- Wyle Laboratories, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA, USA
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Dmitry Kaminskiy
- Biogerontology Research Foundation, London, UK
- Deep Knowledge Life Sciences, London, UK
| | - Ivan V. Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alex Zhavoronkov
- Biogerontology Research Foundation, London, UK
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences. Int J Mol Sci 2017; 18:ijms18061166. [PMID: 28561779 PMCID: PMC5485990 DOI: 10.3390/ijms18061166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/05/2023] Open
Abstract
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.
Collapse
|
10
|
Fernandez-Gonzalo R, Baatout S, Moreels M. Impact of Particle Irradiation on the Immune System: From the Clinic to Mars. Front Immunol 2017; 8:177. [PMID: 28275377 PMCID: PMC5319970 DOI: 10.3389/fimmu.2017.00177] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Despite the generalized use of photon-based radiation (i.e., gamma rays and X-rays) to treat different cancer types, particle radiotherapy (i.e., protons and carbon ions) is becoming a popular, and more effective tool to treat specific tumors due to the improved physical properties and biological effectiveness. Current scientific evidence indicates that conventional radiation therapy affects the tumor immunological profile in a particular manner, which in turn, might induce beneficial effects both at local and systemic (i.e., abscopal effects) levels. The interaction between radiotherapy and the immune system is being explored to combine immune and radiation (including particles) treatments, which in many cases have a greater clinical effect than any of the therapies alone. Contrary to localized, clinical irradiation, astronauts are exposed to whole body, chronic cosmic radiation, where protons and heavy ions are an important component. The effects of this extreme environment during long periods of time, e.g., a potential mission to Mars, will have an impact on the immune system that could jeopardize the health of the astronauts, hence the success of the mission. To this background, the purpose of this mini review is to briefly present the current knowledge in local and systemic immune alterations triggered by particle irradiation and to propose new lines of future research. Immune effects induced by particle radiation relevant to clinical applications will be covered, together with examples of combined radiotherapy and immunotherapy. Then, the focus will move to outer space, where the immune system alterations induced by cosmic radiation during spaceflight will be discussed.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalo
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Sarah Baatout
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Marjan Moreels
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| |
Collapse
|
11
|
Cui J, Yang G, Pan Z, Zhao Y, Liang X, Li W, Cai L. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications. Int J Mol Sci 2017; 18:ijms18020280. [PMID: 28134809 PMCID: PMC5343816 DOI: 10.3390/ijms18020280] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications.
Collapse
Affiliation(s)
- Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Guozi Yang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
- Department of Radiation-Oncology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhenyu Pan
- Department of Radiation-Oncology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Xinyue Liang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China.
- The Pediatric Research Institute, the Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology of the University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
12
|
Gridley DS, Pecaut MJ. Changes in the distribution and function of leukocytes after whole-body iron ion irradiation. JOURNAL OF RADIATION RESEARCH 2016; 57:477-491. [PMID: 27380804 PMCID: PMC5045078 DOI: 10.1093/jrr/rrw051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/11/2016] [Accepted: 04/03/2016] [Indexed: 06/06/2023]
Abstract
High-energy particle radiation could have a considerable impact on health during space missions. This study evaluated C57BL/6 mice on Day 40 after total-body 56Fe26+ irradiation at 0, 1, 2 and 3 gray (Gy). Radiation consistently increased thymus mass (one-way ANOVA: P < 0.005); spleen, liver and lung masses were similar among all groups. In the blood, there was no radiation effect on the white blood cell (WBC) count or major leukocyte types. However, the red blood cell count, hemoglobin, hematocrit and the CD8+ T cytotoxic (Tc) cell count and percentage all decreased, while both the CD4:CD8 (Th:Tc) cell ratio and spontaneous blastogenesis increased, in one or more irradiated groups compared with unirradiated controls (P < 0.05 vs 0 Gy). In contrast, splenic WBC, lymphocyte, B cell and T helper (Th) counts, %B cells and the CD4:CD8 ratio were all significantly elevated, while Tc percentages decreased, in one or more of the irradiated groups compared with controls (P < 0.05 vs 0 Gy). Although there were trends for minor, radiation-induced increases in %CD11b+ granulocytes in the spleen, cells double-labeled with adhesion markers (CD11b+CD54+, CD11b+CD62E+) were normal. Splenocyte spontaneous blastogenesis and that induced by mitogens (PHA, ConA, LPS) was equivalent to normal. In bone marrow, the percentage of cells expressing stem cell markers, Sca-1 and CD34/Sca-1, were low in one or more of the irradiated groups (P < 0.05 vs 0 Gy). Collectively, the data indicate that significant immunological abnormalities still exist more than a month after 56Fe irradiation and that there are differences dependent upon body compartment.
Collapse
Affiliation(s)
- Daila S Gridley
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine, Chan Shun Pavilion, 11175 Campus Street, Loma Linda, CA 92354, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University School of Medicine, Chan Shun Pavilion, 11175 Campus Street, Loma Linda, CA 92354, USA
| |
Collapse
|
13
|
Maier I, Schiestl RH. Evidence from Animal Models: Is a Restricted or Conventional Intestinal Microbiota Composition Predisposing to Risk for High-LET Radiation Injury? Radiat Res 2015; 183:589-93. [PMID: 26010710 DOI: 10.1667/rr13837.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intestinal microbiota affect cell responses to ionizing radiation at the molecular level and can be linked to the development of the immune system, controlled cell death or apoptosis. We have developed a microbiota mouse model and report here that high-linear energy transfer (LET) radiation induced the repair of chromosomal DNA lesions more efficiently in conventional than in restricted intestinal microbiota mice. Based on different phylotype densities after whole-body irradiation, bacterial indicator phylotypes were found to be more abundant in restricted in microbiota than in conventional microbiota. Genotoxic phenotypes of irradiated restricted and conventional microbiota mice were compared with ataxia telangiectasia-deficient restricted and conventional microbiota mice, respectively. Those indicator phylotypes, including Bacteroides (Gram-negative bacterium cTPY-13), Barnesiella intestinihominis and others, which were identified in nonirradiated restricted microbiota mice, increase in radiation-exposed conventional microbiota along with a reduction of persistent DNA double-strand breaks in blood lymphocytes. The dynamic change of phylotype abundances elucidated a feedback mechanism and effect of intestinal microbiota composition on the adaptive response to high-LET radiation. Several other bacterial phylotypes ( Helicobacter hepaticus , Helicobacter spp and others) were found to be more abundant in conventional than restricted microbiota. In this commentary, mouse models used in cancer research and radiotherapy for the study on the effects of intestinal microbiota composition on normal tissue radiation response are characterized and discussed. Highlights of this commentary: 1. Restricted microbiota phylotypes were correlated with persistent DNA double-strand breaks (DSBs) and were found to orchestrate onco-protective controlled cell death after radiation; 2. Restricted microbiota composition reduced proinflammatory extracellular-stimulated immune responses, but specifically increased anti-neoplastic cytolytic memory CD8(+) T cells by low taxonomic diversity and 3. DNA damage repair efficiency induced by a model of conventional microbiota most likely initiates an adaptive response to radiation through microbiota-induced intestinal sub-symptomatic inflammation.
Collapse
Affiliation(s)
- Irene Maier
- a Department of Environmental Health Sciences, Fielding School of Public Health, and
| | - Robert H Schiestl
- a Department of Environmental Health Sciences, Fielding School of Public Health, and.,b Department of Pathology, Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
14
|
Sasaki MS, Tachibana A, Takeda S. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors. JOURNAL OF RADIATION RESEARCH 2014; 55:391-406. [PMID: 24366315 PMCID: PMC4014156 DOI: 10.1093/jrr/rrt133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.
Collapse
Affiliation(s)
- Masao S. Sasaki
- Kyoto University, 17-12 Shironosato, Nagaokakyo-shi, Kyoto 617-0835, Japan
| | - Akira Tachibana
- Department of Biology, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
EL-SAGHIRE HOUSSEIN, MICHAUX ARLETTE, THIERENS HUBERT, BAATOUT SARAH. Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes. Int J Mol Med 2013; 32:1407-14. [DOI: 10.3892/ijmm.2013.1514] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 11/05/2022] Open
|
16
|
Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013; 8:e75097. [PMID: 24069384 PMCID: PMC3777930 DOI: 10.1371/journal.pone.0075097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
Abstract
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer–related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA’s Space Shuttle Program, exploration of space will undoubtedly continue.
Collapse
Affiliation(s)
- Daila S. Gridley
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Louis S. Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Virginia L. Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, United States of America
| | - Ted A. Bateman
- Department of Bioengineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maria Moldovan
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Christopher E. Cunningham
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Tamako A. Jones
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Jerry M. Slater
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
17
|
Gridley DS, Mao XW, Cao JD, Bayeta EJM, Pecaut MJ. Protracted low-dose radiation priming and response of liver to acute gamma and proton radiation. Free Radic Res 2013; 47:811-20. [DOI: 10.3109/10715762.2013.826351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Gridley DS, Rizvi A, Makinde AY, Luo-Owen X, Mao XW, Tian J, Slater JM, Pecaut MJ. Space-relevant radiation modifies cytokine profiles, signaling proteins and Foxp3+T cells. Int J Radiat Biol 2012; 89:26-35. [DOI: 10.3109/09553002.2012.715792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Luo-Owen X, Pecaut MJ, Rizvi A, Gridley DS. Low-Dose Total-Body γ Irradiation Modulates Immune Response to Acute Proton Radiation. Radiat Res 2012; 177:251-64. [DOI: 10.1667/rr2785.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Gridley DS, Freeman TL, Makinde AY, Wroe AJ, Luo-Owen X, Tian J, Mao XW, Rightnar S, Kennedy AR, Slater JM, Pecaut MJ. Comparison of proton and electron radiation effects on biological responses in liver, spleen and blood. Int J Radiat Biol 2011; 87:1173-81. [PMID: 22035456 DOI: 10.3109/09553002.2011.624393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To determine whether differences exist between proton and electron radiations on biological responses after total-body exposure. MATERIALS AND METHODS ICR mice (n=45) were irradiated to 2 Gray (Gy) using fully modulated 70 MeV protons (0.5 Gy/min) and 21 MeV electrons (3 Gy/min). At 36 h post-irradiation liver gene expression, white blood cell (WBC), natural killer (NK) cell and other analyses were performed. RESULTS Oxidative stress-related gene expression patterns were strikingly different for irradiated groups compared to 0 Gy (P<0.05). Proton radiation up-regulated 15 genes (Ctsb, Dnm2, Gpx5, Il19, Il22, Kif9, Lpo, Nox4, Park7, Prdx4, Prdx6, Rag2, Sod3, Srxn1, Xpa) and down-regulated 2 genes (Apoe, Prdx1). After electron irradiation, 20 genes were up-regulated (Aass, Ctsb, Dnm2, Gpx1, Gpx4, Gpx5, Gpx6, Gstk1, Il22, Kif9, Lpo, Nox4, Park7, Prdx3, Prdx4, Prdx5, Rag2, Sod1, Txnrd3, Xpa) and 1 was down-regulated (Mpp4). Of the modified genes, only 11 were common to both forms of radiation. Comparison between the two irradiated groups showed that electrons significantly up-regulated three genes (Gstk1, Prdx3, Scd1). Numbers of WBC and major leukocyte types were low in the irradiated groups (P<0.001 vs. 0 Gy). Hemoglobin and platelet counts were low in the electron-irradiated group (P<0.05 vs. 0 Gy). However, spleens from electron-irradiated mice had higher WBC and lymphocyte counts, as well as enhanced NK cell cytotoxicity, compared to animals exposed to protons (P<0.05). There were no differences between the two irradiated groups in body mass, organ masses, and other assessed parameters, although some differences were noted compared to 0 Gy. CONCLUSION Collectively, the data demonstrate that at least some biological effects induced by electrons may not be directly extrapolated to protons.
Collapse
Affiliation(s)
- Daila S Gridley
- Department of Radiation Medicine, Radiation Research Laboratories, Loma Linda University and Medical Center, Loma Linda, CA 92354, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rizvi A, Pecaut MJ, Gridley DS. Low-dose gamma-rays and simulated solar particle event protons modify splenocyte gene and cytokine expression patterns. JOURNAL OF RADIATION RESEARCH 2011; 52:701-711. [PMID: 21971034 DOI: 10.1269/jrr.10107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The goal was to investigate the T helper (Th) response in splenocytes of mice exposed to low-dose/low-dose-rate (LDR) γ-rays, simulated solar particle event protons (sSPE), or combination of both. C57BL/6 mice were exposed to LDR γ-radiation ((57)Co) to a total dose of 0.05 Gray (Gy) at 0.024 cGy/h, either with or without subsequent exposure to 2 Gy sSPE protons. Expression of genes related to Th cells was evaluated immediately after exposure (day 0). On day 21, intra- and extracellular cytokine production was assessed after activation with anti-CD3 monoclonal antibodies (mAb) or phorbol 12-myristate 13-acetate/ionophore (PMA/I). Five genes were significantly modulated on day 0 in one or more of the irradiated groups compared to controls (p < 0.05): Ccl11, Ccr5, Cd80, Inha, and Il9. On day 21, numbers of cells positive for interferon-γ were high in the LDR + sSPE group versus 0 Gy and LDR γ-rays (p < 0.05), but there was no difference in IL-2 and TNF-α. Levels of secreted cytokines after anti-CD3 mAb activation were high for 5 (MIP-1α, GM-CSF, IFN-γ, TNF-α, IL-13) and low for 2 (IL-7, IL-9) in all irradiated groups. Priming with LDR photons had a significant effect on IFN-γ and IL-17 compared to sSPE protons alone; IL-2 was low only in the LDR + sSPE group. The cytokine patterns after anti-PMA/I activation were different compared to anti-CD3 mAb and with fewer differences among groups. The data show that total-body exposure to space-relevant radiation has profound effects on Th cell status and that priming with LDR γ-rays can in some cases modulate the response to sSPE.
Collapse
Affiliation(s)
- Asma Rizvi
- Department of Radiation Medicine, Division of Biochemistry and Microbiology, Loma Linda University & Medical Center Loma Linda, CA 92354, USA
| | | | | |
Collapse
|