1
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
DuRoss AN, Neufeld MJ, Landry MR, Rosch JG, Eaton CT, Sahay G, Thomas CR, Sun C. Micellar Formulation of Talazoparib and Buparlisib for Enhanced DNA Damage in Breast Cancer Chemoradiotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12342-12356. [PMID: 30860347 PMCID: PMC7213279 DOI: 10.1021/acsami.9b02408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Chemoradiation is an effective combined modality therapeutic approach that utilizes principles of spatial cooperation to combat the adaptability associated with cancer and to potentially expand the therapeutic window. Optimal therapeutic efficacy requires intelligent selection and refinement of radiosynergistic pharmaceutical agents, enhanced delivery methods, and temporal consideration. Here, a monodisperse sub-20 nm mixed poloxamer micelle (MPM) system was developed to deliver hydrophobic drugs intravenously, in tandem with ionizing radiation. This report demonstrates in vitro synergy and enhanced radiosensitivity when two molecularly targeted DNA repair inhibitors, talazoparib and buparlisib, are encapsulated and combined with radiation in a 4T1 murine breast cancer model. Evaluation of in vivo biodistribution and toxicity exhibited no reduction in particle accumulation upon radiation and a lack of both acute and chronic toxicities. In vivo efficacy studies suggested the promise of combining talazoparib, buparlisib, and radiation to enhance survival and control tumor growth. Tissue analysis suggests enhanced DNA damage leading to apoptosis, thus increasing efficacy. These findings highlight the challenges associated with utilizing clinically relevant inclusion criteria and treatment protocols because complete tumor regression and extended survival were masked by an aggressively metastasizing model. As with clinical treatment regimens, the findings here establish a need for further optimization of this multimodal platform.
Collapse
Affiliation(s)
- Allison N. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Megan J. Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Madeleine R. Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Justin G. Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Colin T. Eaton
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97201, USA
| | - Charles R. Thomas
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Corresponding author: (C. Sun)
| |
Collapse
|
3
|
Affiliation(s)
- John E. Moulder
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
de Leon A, Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy. Adv Cancer Res 2018; 139:57-84. [PMID: 29941107 DOI: 10.1016/bs.acr.2018.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasound is the second most utilized imaging modality in the world because it is widely accessible, robust, and safe. Aside from its extensive use in diagnostic imaging, ultrasound has also been frequently utilized in therapeutic applications. Particularly, when combined with appropriate delivery systems, ultrasound provides a flexible platform for simultaneous real-time imaging and triggered release, enabling precise, on-demand drug delivery to target sites. This chapter will discuss the basics of ultrasound including its mechanism of action and how it can be used to trigger the release of encapsulated drug either through thermal or cavitation effects. Fundamentals of ultrasound contrast agents, how they enhance ultrasound signals, and how they can be modified to function as carriers for triggered and targeted release of drugs will also be discussed.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Reshani Perera
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michaela Cooley
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Olive Jung
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
5
|
Tomoda K, Chiang HC, Kozak KR, Kwon GS. Injectable (-)-gossypol-loaded Pluronic P85 micelles for cancer chemoradiotherapy. Int J Radiat Biol 2016; 93:402-406. [PMID: 27827005 DOI: 10.1080/09553002.2016.1257833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of tumor-specific chemoradiotherapy is to achieve synergistic anticancer effects with clinically acceptable toxicity. Our previous studies showed that Pluronic P85 augments radiation cancer cell killing of (±)-gossypol in vitro. In this study, the radiosensitizing effect of (-)-gossypol, more potent Bcl protein inhibitor, with Pluronic P85 was investigated. MATERIALS AND METHODS The inhibitory effect of (-)-gossypol solubilized Pluronic P85 with 0-8 Gy of radiation on clonogenic survival rate of A549 human lung adenocarcinoma cells was investigated in vitro. The anticancer effect of (-)-gossypol-solubilized Pluronic P85 with fractionated radiation of 15 Gy was assessed by A549 tumor-bearing mice. RESULTS (-)-Gossypol-loaded Pluronic P85 was found to be a more potent radiosensitizer in vitro. Pluronic P85 increased the anti-proliferative activity of (-)-gossypol against A549 cells (82 ± 42 versus 190 ± 60 nM). In addition, the combination of P85 and (-)-gossypol effectively reduced clonogenic survival of A549 cells: (11 ± 5%) compared to (-)-gossypol and P85 alone (62 ± 27% and 93 ± 13%, respectively), and enhanced radiation cancer cell killing. In vivo, P85 (200 mg/kg/day) and (-)-gossypol (15 mg/kg/day) could be safely injected intravenously over 5 days and enhanced radiation-related tumor control in an A549 xenograft model. CONCLUSION Pluronic P85 and (-)-gossypol act as a novel dual agent radiosensitizer and holds promise as a chemoradiotherapeutic strategy.
Collapse
Affiliation(s)
- Keishiro Tomoda
- a Pharmaceutical Sciences Division, School of Pharmacy , University of Wisconsin , Madison , USA
| | - Hsin C Chiang
- a Pharmaceutical Sciences Division, School of Pharmacy , University of Wisconsin , Madison , USA
| | - Kevin R Kozak
- b Mercy Regional Cancer Center Radiation Oncology , Janesville , Wisconsin , USA
| | - Glen S Kwon
- a Pharmaceutical Sciences Division, School of Pharmacy , University of Wisconsin , Madison , USA.,c Faculty of Pharmacy , King Abdulaziz , Jeddah , Saudi Arabia
| |
Collapse
|
6
|
Sandez-Macho I, Casas M, Lage EV, Rial-Hermida MI, Concheiro A, Alvarez-Lorenzo C. Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content. Colloids Surf B Biointerfaces 2015; 133:270-7. [DOI: 10.1016/j.colsurfb.2015.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
|
7
|
Tomoda K, Chiang C, Kozak KR, Kwon GS. Examination of Gossypol-Pluronic Micelles as Potential Radiosensitizers. AAPS JOURNAL 2015; 17:1369-75. [PMID: 26246329 DOI: 10.1208/s12248-015-9809-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/26/2015] [Indexed: 12/28/2022]
Abstract
Chemoradiotherapy, the combination of chemotherapy and radiotherapy to treat cancer, has the potential to enhance local therapeutic effects and simultaneously treat systemic disease. However, chemoradiotherapy may also enhance normal tissue effects leading to both acute and late toxicities. Furthermore, subtherapeutic chemoradiotherapy may result in aggressive tumor repopulation. Tumor-specific radiosensitizing chemotherapy may yield a synergistic therapeutic effect and avoid augmentation of normal tissue toxicity. In this study, the radiosensitizing effects of gossypol were investigated. Also, Pluronics were studied for gossypol solubilization and co-radiosensitization effects. Gossypol inhibits Bcl-2 and Bcl-XL, antiapoptotic proteins that are overexpressed in various cancer cells. Pluronic micelles (P85, F88, L35, and P123) effectively encapsulated gossypol, raising its water solubility by more than 1000-fold. Cytotoxic, anticlonogenic, and radiosensitizing effects were evaluated to characterize gossypol and Pluronic combinations. Gossypol and P85 had the strongest antiproliferative effect on A549 human lung adenocarcinoma cells in a cell viability assay. The IC50 value was seven times lower than gossypol only treatment (330 ± 70 nM vs 2400 ± 400 nM, (mean ± SE)). Gossypol and P85 showed significant inhibition of clonogenic survival, approximately 30% inhibition, compared to treatment with gossypol alone. An experimental sequencing study demonstrated greater inhibition of clonogenic survival when drug treatment followed radiation compared to a sequence of drug treatment followed by radiation. These results suggest that Pluronic micelles readily solubilize gossypol and that the combination of gossypol and P85 may augment the therapeutic effects of ionizing radiation.
Collapse
Affiliation(s)
- Keishiro Tomoda
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin, 53705, USA
| | - Carol Chiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin, 53705, USA
| | - Kevin R Kozak
- Mercy Regional Cancer Center, 1000 Mineral Point Ave, Janesville, Wisconsin, 53548, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin, 53705, USA. .,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea.
| |
Collapse
|