1
|
Abkhezr H, Mohaddes G, Nikniaz Z, Abbasalizad Farhangi M, Heydari H, Nikniaz L. The effect of Extremely Low Frequency Electromagnetic Field on spatial memory of mice and rats: A systematic review. LEARNING AND MOTIVATION 2023. [DOI: 10.1016/j.lmot.2023.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
2
|
Bok J, Ha J, Ahn BJ, Jang Y. Disease-Modifying Effects of Non-Invasive Electroceuticals on β-Amyloid Plaques and Tau Tangles for Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010679. [PMID: 36614120 PMCID: PMC9821138 DOI: 10.3390/ijms24010679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Electroceuticals refer to various forms of electronic neurostimulators used for therapy. Interdisciplinary advances in medical engineering and science have led to the development of the electroceutical approach, which involves therapeutic agents that specifically target neural circuits, to realize precision therapy for Alzheimer's disease (AD). To date, extensive studies have attempted to elucidate the disease-modifying effects of electroceuticals on areas in the brain of a patient with AD by the use of various physical stimuli, including electric, magnetic, and electromagnetic waves as well as ultrasound. Herein, we review non-invasive stimulatory systems and their effects on β-amyloid plaques and tau tangles, which are pathological molecular markers of AD. Therefore, this review will aid in better understanding the recent technological developments, applicable methods, and therapeutic effects of electronic stimulatory systems, including transcranial direct current stimulation, 40-Hz gamma oscillations, transcranial magnetic stimulation, electromagnetic field stimulation, infrared light stimulation and ionizing radiation therapy, and focused ultrasound for AD.
Collapse
Affiliation(s)
- Junsoo Bok
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Juchan Ha
- Department of Biomedical Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
- Correspondence: ; Tel.: +82-2-2220-0655
| |
Collapse
|
3
|
Maldonado-Moreles A, Cordova-Fraga T, Bonilla-Jaime H, Lopez-Camacho PY, Basurto-Islas G. Low frequency vortex magnetic field reduces amyloid β aggregation, increase cell viability and protect from amyloid β toxicity. Electromagn Biol Med 2021; 40:191-200. [PMID: 33043710 DOI: 10.1080/15368378.2020.1830288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023]
Abstract
Plaques formed by abnormal accumulation of amyloid β-peptide (Aβ) lead to onset of Alzheimer's disease (AD). Pharmacological treatments do not reduce Aβ aggregation neither restore learning and memory. Noninvasive techniques have emerged as an alternative to treat AD, such as stimulation with electromagnetic fields (EMF) that decrease Aβ deposition and reverses cognitive impairment in AD mice, even though some studies showed side effects on parallel magnetic fields stimulation. As a new approach of magnetic field (MF) stimulation, vortex magnetic fields (VMF) have been tested inducing a random movement of charged biomolecules in cells, promoting cell viability and apparently safer than parallel magnetic fields. In this study we demonstrate the effect of VMF on Aβ aggregation. The experimental strategy includes, i) design and construction of a coil capable to induce VMF, ii) evaluation of VMF stimulation on Aβ peptide induced-fibrils-formation, iii) evaluation of VMF stimulation on SH-SY5Y neuroblastoma cell line in the presence of Aβ peptide. We demonstrated for the first time that Aβ aggregation exposed to VMF during 24 h decreased ~ 86% of Aβ fibril formation compared to control. Likewise, VMF stimulation reduced Aβ fibrils-cytotoxicity and increase SH-SY5Y cell viability. These data establish the basis for future investigation that involve VMF as inhibitor of Aβ-pathology and indicate the therapeutic potential of VMF for AD treatment.
Collapse
Affiliation(s)
- Alejandro Maldonado-Moreles
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autonoma Metropolitana , Ciudad de México, México
| | | | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Lab de Psicobiología, Universidad Autónoma Metropolitana Iztapalapa , Ciudad de México, México
| | - Perla Y Lopez-Camacho
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa , Ciudad de México, México
| | | |
Collapse
|
4
|
Gao Q, Leung A, Yang YH, Lau BWM, Wang Q, Liao LY, Xie YJ, He CQ. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia. Neural Regen Res 2021; 16:1252-1257. [PMID: 33318402 PMCID: PMC8284293 DOI: 10.4103/1673-5374.301020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extremely low frequency electromagnetic fields (ELF-EMF) can improve the learning and memory impairment of rats with Alzheimer’s disease, however, its effect on cerebral ischemia remains poorly understood. In this study, we established rat models of middle cerebral artery occlusion/reperfusion. One day after modeling, a group of rats were treated with ELF-EMF (50 Hz, 1 mT) for 2 hours daily on 28 successive days. Our results showed that rats treated with ELF-EMF required shorter swimming distances and latencies in the Morris water maze test than those of untreated rats. The number of times the platform was crossed and the time spent in the target quadrant were greater than those of untreated rats. The number of BrdU+ /NeuN+ cells, representing newly born neurons, in the hippocampal subgranular zone increased more in the treated than in untreated rats. Up-regulation in the expressions of Notch1, Hes1, and Hes5 proteins, which are the key factors of the Notch signaling pathway, was greatest in the treated rats. These findings suggest that ELF-EMF can enhance hippocampal neurogenesis of rats with cerebral ischemia, possibly by affecting the Notch signaling pathway. The study was approved by the Institutional Ethics Committee of Sichuan University, China (approval No. 2019255A) on March 5, 2019.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Aaron Leung
- Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yong-Hong Yang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qian Wang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yun-Juan Xie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Riancho J, Sanchez de la Torre JR, Paz-Fajardo L, Limia C, Santurtun A, Cifra M, Kourtidis K, Fdez-Arroyabe P. The role of magnetic fields in neurodegenerative diseases. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:107-117. [PMID: 32198562 DOI: 10.1007/s00484-020-01896-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Barrio Ganzo s/n, 39300, Torrelavega, Spain.
- CIBERNED, Barcelona, Spain.
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain.
| | | | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Cristina Limia
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Ana Santurtun
- Legal Medicine and Toxicology Unit, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Kostas Kourtidis
- Department of Environmental Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, 67100, Xanthi, Greece
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group, University of Cantabria, Santander, Spain
| |
Collapse
|
6
|
Gaps in Knowledge Relevant to the "Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz-100 kHz)". HEALTH PHYSICS 2020; 118:533-542. [PMID: 32251081 DOI: 10.1097/hp.0000000000001261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sources of low-frequency fields are widely found in modern society. All wires or devices carrying or using electricity generate extremely low frequency (ELF) electric fields (EFs) and magnetic fields (MFs), but they decline rapidly with distance to the source. High magnetic flux densities are usually found in the vicinity of power lines and close to equipment using strong electrical currents, but can also be found in buildings with unbalanced return currents, or indoor transformer stations. For decades, epidemiological as well as experimental studies have addressed possible health effects of exposure to ELF-MFs. The main goal of ICNIRP is to protect people and the environment from detrimental exposure to all forms of non-ionizing radiation (NIR). To this end, ICNIRP provides advice and guidance by developing and disseminating exposure guidelines based on the available scientific research. Research in the low-frequency range began more than 40 years ago, and there is now a large body of literature available on which ICNIRP set its protection guidelines. A review of the literature has been carried out to identify possible relevant knowledge gaps, and the aim of this statement is to describe data gaps in research that would, if addressed, assist ICNIRP in further developing guidelines and setting revised recommendations on limiting exposure to electric and magnetic fields. It is articulated in two parts: the main document, which reviews the science related to LF data gaps, and the annex, which explains the methodology used to identify the data gaps.
Collapse
|
7
|
Mahaki H, Jabarivasal N, Sardanian K, Zamani A. Effects of Various Densities of 50 Hz Electromagnetic Field on Serum IL-9, IL-10, and TNF-α Levels. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2019; 11:24-32. [PMID: 31647056 PMCID: PMC7024597 DOI: 10.15171/ijoem.2020.1572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Background: Extremely low-frequency electromagnetic fields (ELF-EMFs) are abundantly produced in modern societies. In recent years, interest in the possible effects of ELF-EMFs on the immune system has progressively increased. Objective: To examine the effects of ELF-EMFs with magnetic flux densities of 1, 100, 500, and 2000 µT on the serum levels of interleukin (IL)-9, IL-10, and tumor necrosis factor-alpha (TNF-α). Methods: 80 adult male rats were exposed to ELF-EMFs at a frequency of 50 Hz for 2 h/day for 60 days. The serum cytokines were measured at two phases of pre- and post-stimulation of the immune system by human serum albumin (HSA). Results: Serum levels of IL-9 and TNF-α, as pro-inflammatory cytokines, were decreased due to 50 Hz EMFs exposure compared with the controls in the pre- and post-stimulation phases. On the contrary, exposures to 1 and 100 µT 50 Hz EMFs increased the levels of antiinflammatory cytokine, and IL-10 only in the pre-stimulation phase. In the post-stimulation phase, the mean level of serum IL-10 was not changed in the experimental groups. Conclusion: The magnetic flux densities of 1 and 100 µT 50 Hz EMFs had more immunological effects than EMFs with higher densities. Exposure to 50 Hz EMFs may activate anti-inflammatory effects in rats, by down-modulation of pro-inflammatory cytokines (IL-9 and TNF-α) and induction of the anti-inflammatory cytokine (IL-10).
Collapse
Affiliation(s)
- Hanie Mahaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; and Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Naghi Jabarivasal
- Department of Medical Physics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khosro Sardanian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; and Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; and Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Molecular Immunology Research Group, Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Mahaki H, Jabarivasal N, Sardarian K, Zamani A. The effects of extremely low-frequency electromagnetic fields on c-Maf, STAT6, and RORα expressions in spleen and thymus of rat. Electromagn Biol Med 2019; 38:177-183. [PMID: 31017814 DOI: 10.1080/15368378.2019.1608832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study investigated the effect of extremely low-frequency electromagnetic fields (ELF-EMFs) exposure at different magnetic flux densities on genes expression of transcription factor Maf (c-Maf), signal transducer and activator of transcription 6 (STAT6), and retinoid-related orphan receptor alpha (RORα) in the spleen and thymus of rats. Eighty adult male rats were separated into four ELF-EMFs exposed and were exposed to magnetic flux densities of 1, 100, 500, and 2000 µT at a frequency of 50 Hz for 2 h daily for up to 60 d. All rats were intraperitoneally immunized on d 31, 44, and 58 of exposure. The experimental results showed that the expression levels of c-Maf, STAT6, and RORα in the thymus were not significantly changed at different magnetic flux densities. The expression levels of RORα and c-Maf were significantly downregulated at the densities of 1 and 100 µT, while the expression of STAT6 was only significantly decreased at the density of 100 µT. In conclusion, low magnetic flux densities of ELF-EMFs may reduce the expression levels of c-Maf, STAT6, and RORα genes in the spleen.
Collapse
Affiliation(s)
- Hanie Mahaki
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Naghi Jabarivasal
- c Department of Medical Physics , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Khosro Sardarian
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Alireza Zamani
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,d Molecular Immunology Research Group , Research Center for Molecular Medicine, Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
9
|
Karimi SA, Salehi I, Shykhi T, Zare S, Komaki A. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behav Brain Res 2019; 359:630-638. [DOI: 10.1016/j.bbr.2018.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
|
10
|
Sun Y, Shi Z, Wang Y, Tang C, Liao Y, Yang C, Cai P. Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E2 alterations in Caenorhabditis elegans under extremely low-frequency electromagnetic field. Int J Radiat Biol 2018; 94:1159-1166. [DOI: 10.1080/09553002.2019.1524943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yongyan Sun
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Zhenhua Shi
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Environmental Bioelectrochemistry Center, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Yahong Wang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chao Tang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Yanyan Liao
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chuanjun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| |
Collapse
|
11
|
Mailan Arachchige Don RK, Jung JS, Lee YJ, Hong SC. ELF-MF occupational exposure in die-casting and electroplating workers in Korea. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2018; 26:624-631. [PMID: 29697306 DOI: 10.1080/10803548.2018.1469721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A 24-h exposure assessment was performed in two groups of blue-collar workers from a die-casting plant and an electroplating plant to investigate levels of exposure to extremely low-frequency magnetic fields (ELF-MFs), using an EMDEX Lite (Enertech, USA) dosimeter. ELF-MF exposure of workers from the die-casting plant (arithmetic M ± SD 0.649 ± 1.343 µT) is higher than in electroplating workers (0.138 ± 0.045 µT). Higher ELF-MF exposure occurred among workers living in the same building as their workplace compared with that among other workers. This study suggests that ELF-MF exposure levels should be taken into consideration when providing dormitories for workers to minimize levels of residential ELF-MF exposure due to emissions from industrial plants. The study recommends that blue-collar workers should be made aware of measures to minimize their exposure to environmental agents such as ELF-MFs and electromagnetic fields during work, such as maintaining a safe distance between machines and avoiding undesirable behavior with equipment.
Collapse
Affiliation(s)
| | - Joon-Sig Jung
- National Indoor Environment & Noise Research Division, National Institute of Environmental Research, Korea
| | - Yun-Jin Lee
- Department of Occupational Health & Safety Engineering, Inje University, Korea
| | - Seung-Cheol Hong
- Department of Emergency and Disaster Management, Inje University, Korea.,Department of Occupational Health & Safety Engineering, Inje University, Korea
| |
Collapse
|
12
|
Kumari K, Koivisto H, Viluksela M, Paldanius KMA, Marttinen M, Hiltunen M, Naarala J, Tanila H, Juutilainen J. Behavioral testing of mice exposed to intermediate frequency magnetic fields indicates mild memory impairment. PLoS One 2017; 12:e0188880. [PMID: 29206232 PMCID: PMC5714647 DOI: 10.1371/journal.pone.0188880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Human exposure to intermediate frequency magnetic fields (MF) is increasing due to applications like electronic article surveillance systems and induction heating cooking hobs. However, limited data is available on their possible health effects. The present study assessed behavioral and histopathological consequences of exposing mice to 7.5 kHz MF at 12 or 120 μT for 5 weeks. No effects were observed on body weight, spontaneous activity, motor coordination, level of anxiety or aggression. In the Morris swim task, mice in the 120 μT group showed less steep learning curve than the other groups, but did not differ from controls in their search bias in the probe test. The passive avoidance task indicated a clear impairment of memory over 48 h in the 120 μT group. No effects on astroglial activation or neurogenesis were observed in the hippocampus. The mRNA expression of brain-derived neurotrophic factor did not change but expression of the proinflammatory cytokine tumor necrosis factor alpha mRNA was significantly increased in the 120 μT group. These findings suggest that 7.5 kHz MF exposure may lead to mild learning and memory impairment, possibly through an inflammatory reaction in the hippocampus.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| | | | - Matti Viluksela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- National Institute for Health and Welfare, Environmental Health Unit, Kuopio, Finland
| | | | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Zhang H, Cheng Y, Luo X, Duan Y. Protective effect of procyanidins extracted from the lotus seedpod on immune function injury induced by extremely low frequency electromagnetic field. Biomed Pharmacother 2016; 82:364-72. [DOI: 10.1016/j.biopha.2016.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022] Open
|
14
|
Ghadamgahi M, Monazzam MR, Hosseini M. Memory loss risk assessment for the students nearby high-voltage power lines-a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:355. [PMID: 27194231 DOI: 10.1007/s10661-016-5358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
With increasing sources of alternating current electromagnetic fields (EMFs) in everyday life, their possible harmful effects on human health are a main area of concern in many countries. Given that children are the most valuable assets of each country, it is of utmost importance to study the effect(s) of EMF exposure on various health aspects of members within this age group. The present research is the first systematic study of the effects of exposure to electric substations on the memory status of male students in the age group of 10 to 12 years. The flux density values of extremely low frequency magnetic field were measured at four elementary schools in Tehran in accordance with IEEE std 644-1994. The device was 3-axis (X, Y, and Z) Gauss Meter, model: TES-1394. The students from two schools nearby a high voltage electricity substation (at distances of 30 and 50 m) were selected as the exposed group, and the students of two other schools at further distances of 1390 and 610 m were considered as the control group. To determine the status of working memory in the students, the questionnaire was adapted from Wechsler Intelligence Scale for Children (WISC-IV). The completed questionnaires were analyzed by t test and chi-square using SPSS 20. The average magnetic flux density was 0.245 μT at case schools and 0.164 μT at control schools, P < 0.01. The demographic characteristics of the students in the two groups were not statistically different. However, the difference in working memory was significant at the level of 5 %. The results of the questionnaire data showed that students in the control group had better working memory compared to students in case group. The findings revealed a reverse correlation between magnetic flux density and working memory of students (R = -0.255). It is concluded that extremely low frequency magnetic field exposure may have a negative impact on the working memory of children, but further studies are necessary to reach a definitive conclusion.
Collapse
Affiliation(s)
- Mojgan Ghadamgahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran, Iran
| | - Mohammad Reza Monazzam
- Department of Occupational Hygiene, School of Public Health and Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Hosseini
- Department of Physics, Faculty of Basic Sciences, Islamic Azad University- North Tehran Branch and Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Long-term exposure to ELF-MF ameliorates cognitive deficits and attenuates tau hyperphosphorylation in 3xTg AD mice. Neurotoxicology 2016; 53:290-300. [PMID: 26945731 DOI: 10.1016/j.neuro.2016.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
Although numerous studies have reported the influence of extremely low frequency magnetic field (ELF-MF) exposure on human health, its effects on cognitive deficits in Alzheimer's disease (AD) have remained under debate. Moreover, the influence of ELF-MF on hyperphosphorylated tau, which is one of the most common pathological hallmarks of AD, has not been reported to date. Therefore, transgenic mice (3xTg) were used in the present study. 3xTg mice, which express an APP/PS1 mutation combined with a tau (P301L) mutation and that develop cognitive deficits at 6 months of age, were subjected to ELF-MF (50Hz, 500μT) exposure or sham exposure daily for 3 months. We discovered that ELF-MF exposure ameliorated cognitive deficits and increased synaptic proteins in 3xTg mice. The protective effects of ELF-MF exposure may have also been caused by the inhibition of apoptosis and/or decreased oxidative stress levels that were observed in the hippocampus tissues of treated mice. Furthermore, tau hyperphosphorylation was decreased in vivo because of ELF-MF exposure, and this decrease was induced by the inhibition of GSK3β and CDK5 activities and activation of PP2Ac. We are the first to report that exposure to ELF-MF can attenuate tau phosphorylation. These findings suggest that ELF-MF exposure could act as a valid therapeutic strategy for ameliorating cognitive deficits and attenuating tau hyperphosphorylation in AD.
Collapse
|
16
|
Zhang Y, Lai J, Ruan G, Chen C, Wang DW. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: a pooled analysis of epidemiologic studies. ENVIRONMENT INTERNATIONAL 2016; 88:36-43. [PMID: 26703095 DOI: 10.1016/j.envint.2015.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/23/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Studies have suggested that extremely low frequency electromagnetic fields (ELF-EMF) may affect physiological functions in animal models. However, epidemiologic studies investigating the association of ELF-EMF with the susceptibility to cancer yield contradictory results. In this comprehensive analysis, we conducted a search for case-control surveys regarding the associations of ELF-EMF and cancer susceptibility in electronic databases. A total of 42 studies involving 13,259 cases and 100,882 controls were retrieved. Overall, increased susceptibility to cancer was identified in the ELF-EMF exposed population (OR=1.08, 95% CI: 1.01, 1.15, P=0.02). In the stratified analyses, increased risk was found in North America (OR=1.10; 95% CI: 1.02, 1.20, P=0.02), especially the United States (OR=1.10; 95% CI: 1.01, 1.20, P=0.03). However, studies from Europe contradict these results. Moreover, a higher risk was found to be statistically significantly associated with the residential exposed population (OR=1.18; 95% CI: 1.02, 1.37, P=0.03). Furthermore, an increased cancer risk was found in interview-based surveys (OR=1.16; 95% CI: 1.00, 1.35, P=0.04). In device measurement-based studies, a slight increased risk was found only in premenopausal breast cancer (OR=1.23; 95% CI: 1.01, 1.49, P=0.04). Our meta-analysis suggests that ELF-EMFs are associated with cancer risk, mainly in the United States and in residential exposed populations. Methodological challenges might explain the differences among studies.
Collapse
Affiliation(s)
- Yemao Zhang
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan, People's Republic of China
| | - Jinsheng Lai
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guoran Ruan
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chen Chen
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Dao Wen Wang
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Extremely Low Frequency Electromagnetic Fields Facilitate Vesicle Endocytosis by Increasing Presynaptic Calcium Channel Expression at a Central Synapse. Sci Rep 2016; 6:21774. [PMID: 26887777 PMCID: PMC4757866 DOI: 10.1038/srep21774] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests significant biological effects caused by extremely low frequency electromagnetic fields (ELF-EMF). Although exo-endocytosis plays crucial physical and biological roles in neuronal communication, studies on how ELF-EMF regulates this process are scarce. By directly measuring calcium currents and membrane capacitance at a large mammalian central nervous synapse, the calyx of Held, we report for the first time that ELF-EMF critically affects synaptic transmission and plasticity. Exposure to ELF-EMF for 8 to 10 days dramatically increases the calcium influx upon stimulation and facilitates all forms of vesicle endocytosis, including slow and rapid endocytosis, endocytosis overshoot and bulk endocytosis, but does not affect the RRP size and exocytosis. Exposure to ELF-EMF also potentiates PTP, a form of short-term plasticity, increasing its peak amplitude without impacting its time course. We further investigated the underlying mechanisms and found that calcium channel expression, including the P/Q, N, and R subtypes, at the presynaptic nerve terminal was enhanced, accounting for the increased calcium influx upon stimulation. Thus, we conclude that exposure to ELF-EMF facilitates vesicle endocytosis and synaptic plasticity in a calcium-dependent manner by increasing calcium channel expression at the nerve terminal.
Collapse
|
18
|
Maes A, Anthonissen R, Wambacq S, Simons K, Verschaeve L. The Cytome Assay as a Tool to Investigate the Possible Association Between Exposure to Extremely Low Frequency Magnetic Fields and an Increased Risk for Alzheimer’s Disease. J Alzheimers Dis 2016; 50:741-9. [DOI: 10.3233/jad-150669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Annemarie Maes
- Scientific Institute of Public Health (WIV-ISP), Toxicology Unit, Brussels, Belgium
| | - Roel Anthonissen
- Scientific Institute of Public Health (WIV-ISP), Toxicology Unit, Brussels, Belgium
| | - Sheleen Wambacq
- Scientific Institute of Public Health (WIV-ISP), Toxicology Unit, Brussels, Belgium
- Faculty of Pharmacy, Free University of Brussels, Brussels, Belgium
| | - Koen Simons
- Scientific Institute of Public Health (WIV-ISP), Health and Environment Unit, Brussels, Belgium
| | - Luc Verschaeve
- Scientific Institute of Public Health (WIV-ISP), Toxicology Unit, Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Lai J, Zhang Y, Liu X, Zhang J, Ruan G, Chaugai S, Chen C, Wang DW. Effects of extremely low frequency electromagnetic fields (100μT) on behaviors in rats. Neurotoxicology 2015; 52:104-13. [PMID: 26593281 PMCID: PMC7127835 DOI: 10.1016/j.neuro.2015.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
Prolonged exposure to ELF-EMF has no effect on the behavior of the adult male rats. Including anxiety/depression like behavior, and spatial/fear learning and memory. Exposure to ELF-EMF might be safe.
Recently, extremely low frequency electromagnetic fields (ELF-EMF) have received considerable attentions for their potential pathogenicity. In the present study, we explored the effects of ELF-EMF on behaviors of adult male rats. Sixty adult male rats were randomly divided into two groups, the sham exposure group and the 50 Hz/100 μT ELF-EMF exposure group. During the 24 weeks exposure, body weight, as well as food and water intake were recorded. Results showed that food and water intake and the body weight of the rats were not affected by the exposure. After 24 weeks exposure, open field test and elevated plus maze were conducted to evaluate the anxiety-like behavior, the tail suspension test and forced swim test were conducted to evaluate depression-like behavior and Morris water maze and fear conditioning tests were used to evaluate the cognitive and memory ability. Exposure to ELF-EMF did not induce any anxiety-like or depression-like behaviors compared with the sham exposure. Moreover, the cognitive and memory ability was not impaired by the ELF-EMF exposure. Furthermore, ELF-EMF exposure did not affect the morphology and histology of the brain. In conclusion, 24 weeks exposure to 50 Hz/100 μT ELF-EMF had no effect on the behaviors of the adult male rats.
Collapse
Affiliation(s)
- Jinsheng Lai
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yemao Zhang
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430074, People's Republic of China
| | - Xingfa Liu
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430074, People's Republic of China
| | - Jiangong Zhang
- High Voltage Research Institute, China Electric Power Research Institute, Wuhan 430074, People's Republic of China
| | - Guoran Ruan
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Sandip Chaugai
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Dao Wen Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|