1
|
Martin OA, Sykes PJ, Lavin M, Engels E, Martin RF. What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. Radiat Res 2024; 202:309-327. [PMID: 38966925 DOI: 10.1667/rade-24-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
Collapse
Affiliation(s)
- Olga A Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Pamela J Sykes
- College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, SA, Australia
| | - Martin Lavin
- Centre for Clinical Research, University of Queensland, QSL, Brisbane, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC, Australia
| | - Roger F Martin
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Shamsabadi R, Baghani HR. Impact of gadolinium concentration and cell oxygen levels on radiobiological characteristics of gadolinium neutron capture therapy technique in brain tumor treatment. Radiol Phys Technol 2024; 17:135-142. [PMID: 37989987 DOI: 10.1007/s12194-023-00758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Neutron capture therapy (NCT) with various concentrations of gadolinium (157Gd) is one of the treatment modalities for glioblastoma (GBM) tumors. Current study aims to evaluate how variations of 157Gd concentration and cell oxygen levels can affect the relative biological effectiveness (RBE) of gadolinium neutron capture therapy (GdNCT) technique through a hybrid Monte Carlo (MC) simulation approach. At first, Snyder phantom including a spherical tumor was simulated by Geant4 MC code and relevant energy electron spectra to different 157Gd concentrations including 100, 250, 500, and 1000 ppm were calculated following the neutron irradiation of simulated phantom. Scored energy electron spectra were then imported to Monte Carlo damage simulation (MCDS) code to estimate RBE values (both RBESSB and RBEDSB) at different gadolinium concentrations and oxygen levels from 10 to 100%. The results indicate that variations of 157Gd can affect the energy spectrum of released secondary electrons including Auger electrons. Variation of gadolinium concentration from 100 to 1000 ppm in tumor region can change RBESSB and RBEDSB values by about 0.1% and 0.5%, respectively. Besides, maximum variations of 4.3% and 2% were calculated for RBEDSB and RBESSB when cell oxygen level changed from 10 to 100%. From the results, variations of considered gadolinium and oxygen concentrations during GdNCT can influence RBE values. Nevertheless, due to the not remarkable changes in the intensity of Auger electrons, a slight difference in RBE values would be expected at various 157Gd concentrations, although considerable RBE changes were calculated relevant to the oxygen alternations inside tumor tissue.
Collapse
Affiliation(s)
- Reza Shamsabadi
- Physics Department, Hakim Sabzevari University, Daneshgah Blvd, P.O. 9617976487, Sabzevar, Iran
| | - Hamid Reza Baghani
- Physics Department, Hakim Sabzevari University, Daneshgah Blvd, P.O. 9617976487, Sabzevar, Iran.
| |
Collapse
|
3
|
Ghaffarlou M, Mohammadi A, Mousazadeh N, Salehiabar M, Kalantari Y, Charmi J, Barsbay M, Ertas YN, Danafar H, Rezaeejam H, Nosrati H, Javani S. Facile preparation of silver based radiosensitizers via biomineralization method for enhanced in vivo breast cancer radiotherapy. Sci Rep 2023; 13:15131. [PMID: 37704633 PMCID: PMC10499791 DOI: 10.1038/s41598-023-40763-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
To solve the traditional radiotherapy obstacles, and also to enhance the radiation therapy efficacy various radiosensitizers have been developed. Radiosensitizers are promising agents that under X-ray irradiation enhance injury to tumor tissue by accelerating DNA damage. In this report, silver-silver sulfide nanoparticles (Ag-Ag2S NPs) were synthesized via a facile, one-pot and environmentally friendly biomineralization method. Ag-Ag2S was coated with bovine serum albumin (BSA) in situ and applied as an X-ray sensitizer to enhance the efficiency of radiotherapy. Also, folic acid (FA) was conjugated to Ag-Ag2S@BSA to impart active targeting capability to the final formulation (Ag-Ag2S@BSA-FA). Prepared NPs were characterized by transmission electron microscopes (TEM), scanning electron microscope (SEM), dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. Results show that most of the NPs have well-defined uniform Janus structures. The biocompatibility of the NPs was then evaluated both in vitro and in vivo. A series of in vitro assays were performed on 4T1 cancer cells to evaluate the therapeutic efficacy of the designed NPs. In addition, the radio-enhancing ability of the NPs was tested on the 4T1 breast cancer murine model. MTT, live and dead cell staining, apoptosis, ROS generation, and clonogenic in vitro assays demonstrated the efficacy of NPs as radiosensitizers in radiotherapy. In vivo results as well as H&E staining tumor tissues confirmed tumor destruction in the group that received Ag-Ag2S@BSA-FA NPs and exposed to X-ray. The results showed that prepared tumor-targeted Ag-Ag2S@BSA-FA NPs could be potential candidates as radiosensitizers for enhanced radiotherapy.
Collapse
Affiliation(s)
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Salehiabar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yahya Kalantari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jalil Charmi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Siamak Javani
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
4
|
Lobachevsky P, Skene C, Munforte L, Smith A, White J, Martin RF. An approach to assessing the contribution of the high LET effect in strategies for Auger endoradiotherapy. Int J Radiat Biol 2023; 99:95-102. [PMID: 34519610 DOI: 10.1080/09553002.2021.1976862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose: The interest in exploiting Auger emitters in cancer therapy stems from their high linear energy transfer (LET)-type radiation damage to DNA. However, the design of Auger-emitter labeled vehicles that target the Auger cascade specifically to the DNA of tumour cells is challenging. Here we suggest a possible approach to evaluate tumour-targeting Auger-labeled conjugates by assessing the impact of a radioprotector known to be effective in protecting from low LET radiation, but not high LET radiation. Given some similarity between the energy spectrum of Auger electrons and that of secondary electrons from soft X-rays, we report the results of radioprotection experiments with 25 kVp X-rays. Materials and methods: Clonogenic survival curves for cultured human keratinocytes were established for three different irradiation conditions: 137Cs γ-rays, 25 kVp X-rays and 320 kVp X-rays, and the effect of including a new radioprotector, denoted "2PH", was investigated.Results: The extent of radioprotection by 2PH was comparable for all radiation conditions, although RBE was higher (about 1.7) for soft X-rays. Conclusions: Radioprotectors like 2PH will help to evaluate Auger endoradiotherapy strategies, by determining the relative contributions of the high-LET effects (not protected), compared to other components, such as Auger electrons not effectively targeted to DNA.
Collapse
Affiliation(s)
- Pavel Lobachevsky
- Peter MacCallum Cancer Centre, Parkville, Australia.,Advanced Analytical Technologies, Melbourne, Australia
| | - Colin Skene
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, Australia
| | | | - Andrea Smith
- Peter MacCallum Cancer Centre, Parkville, Australia
| | - Jonathan White
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Roger F Martin
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Abstract
Cancer is a worldwide problem afflicting 19 million people. Inhibition of DNA synthesis has been a cornerstone of anticancer therapy. A variety of chemotherapy drugs have been developed and many of these are aimed at inhibiting DNA synthesis, as they damage DNA, form DNA adduct and interfere with DNA synthesis. Another type of chemotherapy interferes with the synthesis of nucleotide pools. There are also other types of drugs that inhibit topoisomerases resulting in the interference with DNA replication and transcription. Significant progress has been made regarding radiation therapy that includes X-ray (and γ-ray), proton therapy and heavy ion therapy. The Auger therapy is a type of radiation therapy that differs from X-ray, proton or heavy ion therapy. The method relies on the use of high Z elements such as gadolinium, iodine, gold or silver. Irradiation of these elements results in the release of electrons including the Auger electrons that have strong DNA damaging effect. Tamanoi et al. developed novel nanoparticles containing gadolinium or iodine to place high Z elements at the periphery of the nucleus thus localizing them close to DNA. Irradiation with monochromatic X-ray resulted in the formation of double-strand DNA breaks leading to the destruction of tumor mass. Comparison of conventional X-ray therapy and the Auger therapy is discussed.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan; Center for Integrative Medicine and Physics, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Higashi Y, Ma Y, Matsumoto K, Shiro A, Saitoh H, Kawachi T, Tamanoi F. Auger electrons and DNA double-strand breaks studied by using iodine-containing chemicals. Enzymes 2022; 51:101-115. [PMID: 36336404 DOI: 10.1016/bs.enz.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Irradiation of high Z elements such as iodine, gold, gadolinium with monochromatic X-rays causes photoelectric effects that include the release of Auger electrons. Decay of radioactive iodine such as I-123 and I-125 also results in multiple events and some involve the generation of Auger electrons. These electrons have low energy and travel only a short distance but have a strong effect on DNA damage including the generation of double-strand breaks. In this chapter, we focus on iodine and discuss various studies that used iodine-containing chemicals to generate Auger electrons and cause DNA double-strand breaks. First, DNA synthesis precursors containing iodine were used to place iodine on DNA. DNA binding dyes such as iodine Hoechst were investigated for Auger electron generation and DNA breaks. More recently, iodine containing nanoparticles were developed. We describe our study using tumor spheroids loaded with iodine nanoparticles and synchrotron-generated monochromatic X-rays. This study led to the demonstration that an optimum effect on DNA double-strand break formation is observed with a 33.2keV X-ray which is just above the K-edge energy of iodine.
Collapse
Affiliation(s)
- Yuya Higashi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Yue Ma
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ayumi Shiro
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Hyogo, Japan
| | - Hiroyuki Saitoh
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Hyogo, Japan
| | - Tetsuya Kawachi
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, Kizu, Japan
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Hao Y, Peng B, Si C, Wang B, Luo C, Chen M, Luo C, Gong B, Li Z. PVP-Modified Multifunctional Bi 2WO 6 Nanosheets for Enhanced CT Imaging and Cancer Radiotherapy. ACS OMEGA 2022; 7:18795-18803. [PMID: 35694478 PMCID: PMC9178605 DOI: 10.1021/acsomega.2c01591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Malignant tumors are one of the main causes of human death. The clinical treatment of malignant tumors is usually surgery, chemotherapy, radiotherapy, and so forth. Radiotherapy, as a traditional and effective treatment method for cancer, is widely used in clinical practice, but the radiation resistance of tumor cells and the toxic side effects to normal cells are still the Achilles heel of radiotherapy. Multifunctional inorganic high-atom nanomaterials are expected to enhance the effect of tumor radiotherapy. Tungsten and bismuth, which contain elements with high atomic coefficients, have strong X-ray energy attenuation capability. We synthesized Bi2WO6 nanosheets (NSs) using a hydrothermal synthesis method and modified polyvinylpyrrolidone (PVP) on their surface to make them more stable. PVP-Bi2WO6 NSs have a variety of effects after absorbing X-rays (such as the photoelectric effect and Compton effect) and release a variety of particles such as photoelectrons, Compton electrons, auger electrons, and so forth, which can react with organic molecules or water in cells, generate a large number of free radicals, and promote cell apoptosis, thereby improving the effect of radiotherapy. We show through γ-H2AX and DCFH-DA probe analysis experiments that PVP-Bi2WO6 NSs can effectively increase cell DNA damage and reactive oxygen species formation under X-ray irradiation. Clone formation analysis showed that PVP-Bi2WO6 NSs can effectively suppress cell colony formation under X-ray irradiation. These versatile functions endow PVP-Bi2WO6 NSs with enhanced radiotherapy efficacy in animal models. In addition, PVP-Bi2WO6 NSs can also be used as contrast agents for X-ray computed tomography (CT) imaging with obvious effects. Therefore, PVP-Bi2WO6 NSs can be used as CT imaging contrast agents and tumor radiotherapy sensitizers and have potential medical applications.
Collapse
Affiliation(s)
- Yifan Hao
- Department
of Oral Radiology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin
Provincial Key Laboratory of Tooth Development and Bone Remodeling,
School and Hospital of Stomatology, Jilin
University, Changchun 130021, P. R. China
| | - Bo Peng
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Chao Si
- Department
of Oral Radiology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin
Provincial Key Laboratory of Tooth Development and Bone Remodeling,
School and Hospital of Stomatology, Jilin
University, Changchun 130021, P. R. China
| | - Bo Wang
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Chengfeng Luo
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Menghao Chen
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Cheng Luo
- Department
of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Baijuan Gong
- Department
of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| | - Zhimin Li
- Department
of Oral Radiology, School of Stomatology, China Medical University, Shenyang 110002, P. R. China
| |
Collapse
|
8
|
Obata H, Tsuji AB, Kumata K, Sudo H, Minegishi K, Nagatsu K, Takakura H, Ogawa M, Kurimasa A, Zhang MR. Development of Novel 191Pt-Labeled Hoechst33258: 191Pt Is More Suitable than 111In for Targeting DNA. J Med Chem 2022; 65:5690-5700. [PMID: 35358392 DOI: 10.1021/acs.jmedchem.1c02209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aims to establish new labeling methods for no-carrier-added radio-Pt (191Pt) and to evaluate the in vitro properties of 191Pt-labeled agents compared with those of agents labeled with the common emitter 111In. 191Pt was complexed with the DNA-targeting dye Hoechst33258 via diethylenetriaminepentaacetic acid (DTPA) or the sulfur-containing amino acid cysteine (Cys). The intranuclear fractions of 191Pt- and 111In-labeled Hoechst33258 were comparable, indicating that the labeling for 191Pt via DTPA or Cys and the labeling for 111In via DTPA worked equally well. 191Pt showed a DNA-binding/cellular uptake ratio of more than 1 order of magnitude greater than that of 111In. [191Pt]Pt-Hoechst33258 labeled via Cys showed a higher cellular uptake than that labeled via DTPA, resulting in a very high DNA-binding fraction of [191Pt]Pt-Cys-Hoechst33258 and extensive DNA damage. Our labeling methods of radio-Pt, especially via Cys, promote the development of radio-Pt-based agents for use in Auger electron therapy targeting DNA.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsuyuki Minegishi
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hideo Takakura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Akihiro Kurimasa
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
9
|
Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray. Sci Rep 2021; 11:14192. [PMID: 34262055 PMCID: PMC8280225 DOI: 10.1038/s41598-021-93429-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
X-ray irradiation of high Z elements causes photoelectric effects that include the release of Auger electrons that can induce localized DNA breaks. We have previously established a tumor spheroid-based assay that used gadolinium containing mesoporous silica nanoparticles and synchrotron-generated monochromatic X-rays. In this work, we focused on iodine and synthesized iodine-containing porous organosilica (IPO) nanoparticles. IPO were loaded onto tumor spheroids and the spheroids were irradiated with 33.2 keV monochromatic X-ray. After incubation in CO2 incubator, destruction of tumor spheroids was observed which was accompanied by apoptosis induction, as determined by the TUNEL assay. By employing the γH2AX assay, we detected double strand DNA cleavages immediately after the irradiation. These results suggest that IPO first generate double strand DNA breaks upon X-ray irradiation followed by apoptosis induction of cancer cells. Use of three different monochromatic X-rays having energy levels of 33.0, 33.2 and 33.4 keV as well as X-rays with 0.1 keV energy intervals showed that the optimum effect of all three events (spheroid destruction, apoptosis induction and generation of double strand DNA breaks) occurred with a 33.2 keV monochromatic X-ray. These results uncover the preferential effect of K-edge energy X-ray for tumor spheroid destruction mediated by iodine containing nanoparticles.
Collapse
|
10
|
Pirovano G, Wilson TC, Reiner T. Auger: The future of precision medicine. Nucl Med Biol 2021; 96-97:50-53. [PMID: 33831745 PMCID: PMC8164972 DOI: 10.1016/j.nucmedbio.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
First reported by Lise Meitner in 1922 and independently by Pierre Auger in 1923, the Auger effect has been explored as a potential source for targeted radiotherapy. The Auger effect is based on the emission of a low energy electron (typically <25 keV) from an atom post electron capture (EC), internal conversion (IC), or incident X-rays excitation. This phenomenon can cause the emission of a primary electron and multiple electron tracks typically in the nearest proximity of the emission site (2-500 nm). The short range of the emitted Auger cascade results in medium/high levels of linear energy transfer (4-26 keV/μm) exerted on the surrounding tissue. This property makes Auger emitters the ideal candidates for delivering high levels of targeted radiation to a specific target with dimensions comparable to, for example, the DNA. By using a targeting vector such as a small molecule, peptide or antibody, one has the potential of delivering high levels of radiation to tumor specific biomarkers while circumventing off-site toxicity in healthy cells; a challenge which is harder to overcome when using other, longer range sources of radiation such as beta and alpha emitting radionuclides. Several reviews on Auger emitters have been published over the years with two recent examples. For these reviews and others, we support their analysis and therefore to avoid simple repetition, this commentary will seek to address additional aspects and viewpoints. Specifically, we will focus on those most promising preclinical and clinical studies using small molecules, peptides, antibodies and how these studies may serve as a template for future studies.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Thomas C Wilson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA.
| |
Collapse
|
11
|
In Vitro Evaluation of No-Carrier-Added Radiolabeled Cisplatin ([ 189, 191Pt]cisplatin) Emitting Auger Electrons. Int J Mol Sci 2021; 22:ijms22094622. [PMID: 33924843 PMCID: PMC8124180 DOI: 10.3390/ijms22094622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
Due to their short-range (2–500 nm), Auger electrons (Auger e−) have the potential to induce nano-scale physiochemical damage to biomolecules. Although DNA is the primary target of Auger e−, it remains challenging to maximize the interaction between Auger e− and DNA. To assess the DNA-damaging effect of Auger e− released as close as possible to DNA without chemical damage, we radio-synthesized no-carrier-added (n.c.a.) [189, 191Pt]cisplatin and evaluated both its in vitro properties and DNA-damaging effect. Cellular uptake, intracellular distribution, and DNA binding were investigated, and DNA double-strand breaks (DSBs) were evaluated by immunofluorescence staining of γH2AX and gel electrophoresis of plasmid DNA. Approximately 20% of intracellular radio-Pt was in a nucleus, and about 2% of intra-nucleus radio-Pt bound to DNA, although uptake of n.c.a. radio-cisplatin was low (0.6% incubated dose after 25-h incubation), resulting in the frequency of cells with γH2AX foci was low (1%). Nevertheless, some cells treated with radio-cisplatin had γH2AX aggregates unlike non-radioactive cisplatin. These findings suggest n.c.a. radio-cisplatin binding to DNA causes severe DSBs by the release of Auger e− very close to DNA without chemical damage by carriers. Efficient radio-drug delivery to DNA is necessary for successful clinical application of Auger e−.
Collapse
|
12
|
Synthesis of no-carrier-added [ 188, 189, 191Pt]cisplatin from a cyclotron produced 188, 189, 191PtCl 42- complex. Sci Rep 2021; 11:8140. [PMID: 33854142 PMCID: PMC8046966 DOI: 10.1038/s41598-021-87576-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/24/2021] [Indexed: 01/01/2023] Open
Abstract
We developed a novel method for production of no-carrier-added (n.c.a.) [188, 189, 191Pt]PtIICl42- from an Ir target material, and then synthesized n.c.a. [*Pt]cis-[PtIICl2(NH3)2] ([*Pt]cisplatin) from [*Pt]PtIICl42-. [*Pt]PtIICl42- was prepared as a synthetic precursor of n.c.a. *Pt complex by a combination of resin extraction and anion-exchange chromatography after the selective reduction of IrIVCl62- with ascorbic acid. The ligand-substitution reaction of Cl with NH3 was promoted by treating n.c.a. [*Pt]PtIICl42- with excess NH3 and heating the reaction mixture, and n.c.a. [*Pt]cisplatin was successfully produced without employing precipitation routes. After this treatment, [*Pt]cisplatin was isolated through preparative HPLC with a radiochemical purity of 99 + % at the end of synthesis (EOS).
Collapse
|
13
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Role of nano-sensitizers in radiation therapy of metastatic tumors. Cancer Treat Res Commun 2021; 26:100303. [PMID: 33454575 DOI: 10.1016/j.ctarc.2021.100303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Cancer metastasis remains the major cause of global cancer deaths. Radiation therapy remains one of the golden standards for cancer treatment. Nanomedicine based strategies have been designed and developed in order to improve the clinical outcomes of cancer therapy and diagnosis at molecular levels. Over the years, several researchers have shown their interest in using radiosensitizers made of high Z elements. Metal-based nanosystems also play a dual role by enhancing the synergistic effect of cell killing via various biological immune responses. This review summarizes the role of Nano-sensitizers in boosting radiation (ionizing/non-ionizing radiations) induced biological responses in treatment of metastatic cancer models.
Collapse
|
15
|
Unruh C, Van Bavel N, Anikovskiy M, Prenner EJ. Benefits and Detriments of Gadolinium from Medical Advances to Health and Ecological Risks. Molecules 2020; 25:molecules25235762. [PMID: 33297578 PMCID: PMC7730697 DOI: 10.3390/molecules25235762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Gadolinium (Gd)-containing chelates have been established as diagnostics tools. However, extensive use in magnetic resonance imaging has led to increased Gd levels in industrialized parts of the world, adding to natural occurrence and causing environmental and health concerns. A vast amount of data shows that metal may accumulate in the human body and its deposition has been detected in organs such as brain and liver. Moreover, the disease nephrogenic systemic fibrosis has been linked to increased Gd3+ levels. Investigation of Gd3+ effects at the cellular and molecular levels mostly revolves around calcium-dependent proteins, since Gd3+ competes with calcium due to their similar size; other reports focus on interaction of Gd3+ with nucleic acids and carbohydrates. However, little is known about Gd3+ effects on membranes; yet some results suggest that Gd3+ interacts strongly with biologically-relevant lipids (e.g., brain membrane constituents) and causes serious structural changes including enhanced membrane rigidity and propensity for lipid fusion and aggregation at much lower concentrations than other ions, both toxic and essential. This review surveys the impact of the anthropogenic use of Gd emphasizing health risks and discussing debilitating effects of Gd3+ on cell membrane organization that may lead to deleterious health consequences.
Collapse
Affiliation(s)
- Colin Unruh
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.U.); (N.V.B.)
| | - Nicolas Van Bavel
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.U.); (N.V.B.)
| | - Max Anikovskiy
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Correspondence: (M.A.); (E.J.P.)
| | - Elmar J. Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.U.); (N.V.B.)
- Correspondence: (M.A.); (E.J.P.)
| |
Collapse
|
16
|
Jahnke T, Hergenhahn U, Winter B, Dörner R, Frühling U, Demekhin PV, Gokhberg K, Cederbaum LS, Ehresmann A, Knie A, Dreuw A. Interatomic and Intermolecular Coulombic Decay. Chem Rev 2020; 120:11295-11369. [PMID: 33035051 PMCID: PMC7596762 DOI: 10.1021/acs.chemrev.0c00106] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.
Collapse
Affiliation(s)
- Till Jahnke
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Max
Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany
- Leibniz
Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Reinhard Dörner
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Ulrike Frühling
- Institut
für Experimentalphysik and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philipp V. Demekhin
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Kirill Gokhberg
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Lorenz S. Cederbaum
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Arno Ehresmann
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - André Knie
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
18
|
Tamanoi F, Matsumoto K, Doan TLH, Shiro A, Saitoh H. Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. NANOMATERIALS 2020; 10:nano10071341. [PMID: 32660093 PMCID: PMC7408070 DOI: 10.3390/nano10071341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
While conventional radiation therapy uses white X-rays that consist of a mixture of X-ray waves with various energy levels, a monochromatic X-ray (monoenergetic X-ray) has a single energy level. Irradiation of high-Z elements such as gold, silver or gadolinium with a synchrotron-generated monochromatic X-rays with the energy at or higher than their K-edge energy causes a photoelectric effect that includes release of the Auger electrons that induce DNA damage—leading to cell killing. Delivery of high-Z elements into cancer cells and tumor mass can be facilitated by the use of nanoparticles. Various types of nanoparticles containing high-Z elements have been developed. A recent addition to this growing list of nanoparticles is mesoporous silica-based nanoparticles (MSNs) containing gadolinium (Gd–MSN). The ability of Gd–MSN to inhibit tumor growth was demonstrated by evaluating effects of irradiating tumor spheroids with a precisely tuned monochromatic X-ray.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
- Department of Microbio., Immunol. & Molec. Genet., University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +81-75-753-9856
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 721337, Vietnam;
| | - Ayumi Shiro
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo 679-0198, Japan; (A.S.); (H.S.)
| | - Hiroyuki Saitoh
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo 679-0198, Japan; (A.S.); (H.S.)
| |
Collapse
|
19
|
Matsumoto K, Saitoh H, Doan TLH, Shiro A, Nakai K, Komatsu A, Tsujimoto M, Yasuda R, Kawachi T, Tajima T, Tamanoi F. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Sci Rep 2019; 9:13275. [PMID: 31570738 PMCID: PMC6768997 DOI: 10.1038/s41598-019-49978-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023] Open
Abstract
Synchrotron generated monochromatic X-rays can be precisely tuned to the K-shell energy of high Z materials resulting in the release of the Auger electrons. In this work, we have employed this mechanism to destruct tumor spheroids. We first loaded gadolinium onto the surface of mesoporous silica nanoparticles (MSNs) producing gadolinium-loaded MSN (Gd-MSN). When Gd-MSN was added to the tumor spheroids, we observed efficient uptake and uniform distribution of Gd-MSN. Gd-MSN also can be taken up into cancer cells and localize to a site just outside of the cell nucleus. Exposure of the Gd-MSN containing tumor spheroids to monochromatic X-ray beams resulted in almost complete destruction. Importantly, this effect was observed at an energy level of 50.25 keV, but not with 50.0 keV. These results suggest that it is possible to use precisely tuned monochromatic X-rays to destruct tumor mass loaded with high Z materials, while sparing other cells. Our experiments point to the importance of nanoparticles to facilitate loading of gadolinium to tumor spheroids and to localize at a site close to the nucleus. Because the nanoparticles can target to tumor, our study opens up the possibility of developing a new type of radiation therapy for cancer.
Collapse
Affiliation(s)
- Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Hiroyuki Saitoh
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo, Japan
| | - Tan Le Hoang Doan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Center for Innovative Materials and Architectures, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ayumi Shiro
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo, Japan
| | - Keigo Nakai
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Aoi Komatsu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ryo Yasuda
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo, Japan
| | - Tetsuya Kawachi
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo, Japan
| | - Toshiki Tajima
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, USA.
| |
Collapse
|
20
|
Goldberger D, Park C, Evlyukhin E, Cifligu P, Pravica M. Cationic Dependence of X-ray Induced Damage in Strontium and Barium Nitrate. J Phys Chem A 2018; 122:8722-8728. [PMID: 30339392 DOI: 10.1021/acs.jpca.8b08224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The response of solids to X-ray irradiation is not well understood in part because the interactions between X-rays and molecules in solids depend on the intra- and/or intermolecular electronic properties of the material. Our previous work demonstrated that X-ray induced damage of certain ionic salts depends on the irradiating photon energy, especially when irradiated with photons of energy near the cation's K-edge. To advance understanding of the cationic dependence of X-ray photochemistry, we present studies of X-ray induced damage of barium nitrate and strontium nitrate. Polycrystalline samples of barium and strontium nitrate were irradiated with high flux monochromatic synchrotron X-rays at selected energies near the K-edge of the respective cations. The damage processes were studied with powder X-ray diffraction, and irradiation products, NO2 and O2, were characterized via Raman spectroscopy. Our results demonstrate that irradiating barium and strontium nitrate with photons of energy greater than the K-edge of the cation promotes a higher rate of decomposition compared to that observed when irradiating with photons of energy below the K-edge. Additionally, differences in X-ray induced damage between the two compounds are examined and discussed, and evidence of the diffusion of irradiation products is presented.
Collapse
Affiliation(s)
- David Goldberger
- Department of Physics , University of Nevada Las Vegas (UNLV) , Las Vegas , Nevada 89154-4002 , United States
| | - Changyong Park
- High-Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory , Carnegie Institution of Washington , Argonne , Illinois 60439 , United States
| | - Egor Evlyukhin
- Department of Physics , University of Nevada Las Vegas (UNLV) , Las Vegas , Nevada 89154-4002 , United States
| | - Petrika Cifligu
- Department of Physics , University of Nevada Las Vegas (UNLV) , Las Vegas , Nevada 89154-4002 , United States
| | - Michael Pravica
- Department of Physics , University of Nevada Las Vegas (UNLV) , Las Vegas , Nevada 89154-4002 , United States
| |
Collapse
|
21
|
Safavi-Naeini M, Chacon A, Guatelli S, Franklin DR, Bambery K, Gregoire MC, Rosenfeld A. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci Rep 2018; 8:16257. [PMID: 30390002 PMCID: PMC6215016 DOI: 10.1038/s41598-018-34643-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
This paper presents Neutron Capture Enhanced Particle Therapy (NCEPT), a method for enhancing the radiation dose delivered to a tumour relative to surrounding healthy tissues during proton and carbon ion therapy by capturing thermal neutrons produced inside the treatment volume during irradiation. NCEPT utilises extant and in-development boron-10 and gadolinium-157-based drugs from the related field of neutron capture therapy. Using Monte Carlo simulations, we demonstrate that a typical proton or carbon ion therapy treatment plan generates an approximately uniform thermal neutron field within the target volume, centred around the beam path. The tissue concentrations of neutron capture agents required to obtain an arbitrary 10% increase in biological effective dose are estimated for realistic treatment plans, and compared to concentrations previously reported in the literature. We conclude that the proposed method is theoretically feasible, and can provide a worthwhile improvement in the dose delivered to the tumour relative to healthy tissue with readily achievable concentrations of neutron capture enhancement drugs.
Collapse
Affiliation(s)
- Mitra Safavi-Naeini
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia.
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia.
| | - Andrew Chacon
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Daniel R Franklin
- Faculty of Engineering & IT, University of Technology Sydney, Sydney, Australia
| | - Keith Bambery
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
| | - Marie-Claude Gregoire
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| |
Collapse
|
22
|
Grokhovsky SL. Use of β Radiation to Localize the Binding Sites of Mercury Ions and Platinum-Containing Ligand in DNA. Mol Biol 2018. [DOI: 10.1134/s0026893318050072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci 2017; 39:24-48. [PMID: 29224916 DOI: 10.1016/j.tips.2017.11.003] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Radiotherapy (RT) is a mainstay treatment for many types of cancer, although it is still a large challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage and producing free radicals. Several strategies have been exploited to develop highly effective and low-toxicity radiosensitizers. In this review, we highlight recent progress on radiosensitizers, including small molecules, macromolecules, and nanomaterials. First, small molecules are reviewed based on free radicals, pseudosubstrates, and other mechanisms. Second, nanomaterials, such as nanometallic materials, especially gold-based materials that have flexible surface engineering and favorable kinetic properties, have emerged as promising radiosensitizers. Finally, emerging macromolecules have shown significant advantages in RT because these molecules can be combined with biological therapy as well as drug delivery. Further research on the mechanisms of radioresistance and multidisciplinary approaches will accelerate the development of radiosensitizers.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Number 238, Baidi Road, Tianjin 300192, China; These authors have contributed equally
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; These authors have contributed equally
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|