1
|
The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker ( Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248845. [PMID: 36557976 PMCID: PMC9785907 DOI: 10.3390/molecules27248845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The objective of the present work was to optimize the extraction of phytochemicals from Hamelia patens Jacq. by ultrasound-assisted extraction. Taguchi L9 orthogonal array was used to evaluate the factors solid/liquid ratio (1:8, 1:12, and 1:16), extraction time (10, 20, and 30 min), and ethanol concentration (0, 35, and 70%). Total polyphenols were the response variable. Chromatographic fractionation using Amberlite XAD-16 was carried out and the total polyphenols, flavonoids, and condensed tannins were quantified. The redox potential, the reduction of the 2,2-diphenyl-1-picrylhydrazyl (DPPH), and the lipid oxidation inhibition were determined. Anti-bacterial activity was evaluated. The phytochemicals were identified by liquid chromatography coupled to mass spectrometry. Optimal extraction conditions were a solid/liquid ratio of 1:16, ethanol of 35%, and 10 min of ultrasound-assisted extraction. Maximum polyphenol content in the crude extract was 1689.976 ± 86.430 mg of gallic acid equivalents (GAE)/100 g of dried plant material. The purified fraction showed a total polyphenols content of 3552.84 ± 7.25 mg of GAE, flavonoids 1316.17 ± 0.27 mg of catechin equivalents, and condensed tannins 1694.87 ± 22.21 mg of procyanidin B1 equivalents, all per 100 g of purified fraction. Its redox potential was 553.93 ± 1.22 mV, reducing 63.08 ± 0.42% of DPPH radical and inhibiting 77.78 ± 2.78% of lipid oxidation. The polyphenols demonstrated antibacterial activity against Escherichia coli, Klebsiella pneumonia, and Enterococcus faecalis. The HPLC-ESI-MS analysis revealed the presence of coumarins, hydroxycinnamic acids, and flavonoids.
Collapse
|
2
|
Discovery of novel 1,2,4-triazole derivatives as xanthine oxidoreductase inhibitors with hypouricemic effects. Bioorg Chem 2022; 129:106162. [DOI: 10.1016/j.bioorg.2022.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
|
3
|
Wang YJ, Chen YY, Hsiao CM, Pan MH, Wang BJ, Chen YC, Ho CT, Huang KC, Chen RJ. Induction of Autophagy by Pterostilbene Contributes to the Prevention of Renal Fibrosis via Attenuating NLRP3 Inflammasome Activation and Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2020; 8:436. [PMID: 32582712 PMCID: PMC7283393 DOI: 10.3389/fcell.2020.00436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is recognized as a global public health problem. NLRP3 inflammasome activation has been characterized to mediate diverse aspect mechanisms of CKD through regulation of proinflammatory cytokines, tubulointerstitial injury, glomerular diseases, renal inflammation, and fibrosis pathways. Autophagy is a characterized negative regulation mechanism in the regulation of the NLRP3 inflammasome, which is now recognized as the key regulator in the pathogenesis of inflammation and fibrosis in CKD. Thus, autophagy is undoubtedly an attractive target for developing new renal protective treatments of kidney disease via its potential effects in regulation of inflammasome. However, there is no clinical useful agent targeting the autophagy pathway for patients with renal diseases. Pterostilbene (PT, trans-3,5-dimethoxy-4-hydroxystilbene) is a natural analog of resveratrol that has various health benefits including autophagy inducing effects. Accordingly, we aim to investigate underlying mechanisms of preventive and therapeutic effects of PT by reducing NLRP3 inflammasome activation and fibrosis through autophagy-inducing effects. The renal protective effects of PT were evaluated by potassium oxonate (PO)-induced hyperuricemia and high adenine diet-induced CKD models. The autophagy induction mechanisms and anti-fibrosis effects of PT by down-regulation of NLRP3 inflammasome are investigated by using immortalized rat kidney proximal tubular epithelial NRK-52E cells. To determine the role of autophagy induction in the alleviating of NLRP3 inflammasome activation and epithelial-mesenchymal transition (EMT), NRK-52E with Atg5 knockdown [NRK-Atg5-(2)] cells were applied in the study. The results indicated that PT significantly reduces serum uric acid levels, liver xanthine oxidase activity, collagen accumulation, macrophage recruitment, and renal fibrosis in CKD models. At the molecular levels, pretreatment with PT downregulating TGF-β-triggered NLRP3 inflammasome activation, and subsequent EMT in NRK-52E cells. After blockage of autophagy by treatment of Atg5 shRNA, PT loss of its ability to prevent NLRP3 inflammasome activation and EMT. Taken together, we suggested the renal protective effects of PT in urate nephropathy and proved that PT induces autophagy leading to restraining TGF-β-mediated NLRP3 inflammasome activation and EMT. This study is also the first one to provide a clinical potential application of PT for a better management of CKD through its autophagy inducing effects.
Collapse
Affiliation(s)
- Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Mao Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Kuo-Ching Huang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Nephrology, Department of Internal Medicine, Chi Mei Hospital, Tainan, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Floris S, Fais A, Rosa A, Piras A, Marzouki H, Medda R, González-Paramás AM, Kumar A, Santos-Buelga C, Era B. Phytochemical composition and the cholinesterase and xanthine oxidase inhibitory properties of seed extracts from the Washingtonia filifera palm fruit. RSC Adv 2019; 9:21278-21287. [PMID: 35521327 PMCID: PMC9066185 DOI: 10.1039/c9ra02928a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/25/2019] [Indexed: 11/21/2022] Open
Abstract
The chemical composition and biological properties of palm Washingtonia filifera (Lindl.) H. Wendl. seeds are seldom studied.
Collapse
Affiliation(s)
- Sonia Floris
- Department of Life and Environmental Sciences
- University of Cagliari
- Monserrato
- Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences
- University of Cagliari
- Monserrato
- Italy
| | - Antonella Rosa
- Department of Biomedical Sciences
- University of Cagliari
- Monserrato
- Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences
- University of Cagliari
- Monserrato
- Italy
| | - Hanen Marzouki
- Laboratory of Transmissible Diseases and Biologically Active Substances
- Faculty of Pharmacy
- University of Monastir
- Tunisia
| | - Rosaria Medda
- Department of Life and Environmental Sciences
- University of Cagliari
- Monserrato
- Italy
| | | | - Amit Kumar
- Department of Electrical and Electronic Engineering
- University of Cagliari
- Cagliari
- Italy
| | | | - Benedetta Era
- Department of Life and Environmental Sciences
- University of Cagliari
- Monserrato
- Italy
| |
Collapse
|
5
|
Caro AA, Davis A, Fobare S, Horan N, Ryan C, Schwab C. Antioxidant and pro-oxidant mechanisms of (+) catechin in microsomal CYP2E1-dependent oxidative stress. Toxicol In Vitro 2018; 54:1-9. [PMID: 30195042 DOI: 10.1016/j.tiv.2018.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
The objectives of this work were to evaluate the effects of catechin on cytochrome P450 2E1 (CYP2E1)-dependent oxidative stress. Microsomes co-expressing human CYP2E1 with NADPH cytochrome P450 reductase and cytochrome b5 were incubated with NADPH and DTPA at pH 7.0. Superoxide anion generation was specifically detected by spin-trapping with DEPMPO. Generation of the DEPMPO-OOH adduct was not observed in the absence of CYP2E1 and in the presence of superoxide dismutase (SOD) or catechin, while catalase was ineffective. Reactive oxygen species generation was detected with 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) by the EPR-detection of its oxidation product, 3-carboxy-proxyl radical (CP●). CP● generation was not observed in the absence of CYP2E1 and in the presence of SOD, while catalase was ineffective. In contrast, catechin increased CPH oxidation, an effect that was not observed in the absence of CYP2E1 or in the presence of SOD (but not catalase), and was not associated with an increase in oxygen consumption. Catechin also increased the non-specific oxidation of the probes CPH and hydroethidine by the superoxide anion-generating system xanthine plus xanthine oxidase. Catechin oxidized CPH in the presence of horseradish peroxidase plus hydrogen peroxide, a catechin radical-generating system. In conclusion, catechin exhibits both antioxidant (superoxide-scavenging) and pro-oxidant effects under CYP2E1-dependent oxidative stress.
Collapse
Affiliation(s)
- Andres A Caro
- Chemistry Department, Hendrix College, Conway, AR 72032, United States.
| | - Alanna Davis
- Chemistry Department, Hendrix College, Conway, AR 72032, United States
| | - Sydney Fobare
- Chemistry Department, Hendrix College, Conway, AR 72032, United States
| | - Nicholas Horan
- Chemistry Department, Hendrix College, Conway, AR 72032, United States
| | - Cameron Ryan
- Chemistry Department, Hendrix College, Conway, AR 72032, United States
| | - Cara Schwab
- Chemistry Department, Hendrix College, Conway, AR 72032, United States
| |
Collapse
|
6
|
Teplova VV, Isakova EP, Klein OI, Dergachova DI, Gessler NN, Deryabina YI. Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030146] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Bonne C. Potential efficiency of antioxidants to prevent pressure ulcers. A neglected hypothesis. Med Hypotheses 2016; 91:28-31. [PMID: 27142137 DOI: 10.1016/j.mehy.2016.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 01/01/2023]
Abstract
Pressure ulcers are necrotic lesions mainly due to capillary hypoperfusion. It is well known that hypoxia and also subsequent oxygenation at reperfusion provoke the formation of reactive oxygen species (ROS) responsible for cell death. The hypothesis of their participation in the pathogenesis of pressure ulcers has already been tested; several antioxidants have the capacity to inhibit skin necrosis in animal models but their efficiency in preventing bedsores has never been demonstrated in patients. The failure of clinical trials to show the protective activity of some antioxidants does not rule out the involvement of ROS in ischemic ulcers and the potential efficacy of other antioxidants in preventing their formation remains possible.
Collapse
Affiliation(s)
- Claude Bonne
- CB-Consultant, 2, rue sur les murs, 17000 La Rochelle, France
| |
Collapse
|
8
|
Li T, Li Q, Gong H, Chen ZF, Peng XW. Treatment with glial derived neurotropic factor (GDNF) attenuates oxidative damages of spinal injury in rat model. Saudi Pharm J 2016. [DOI: 10.1016/j.jsps.2016.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|