1
|
Babych M, Garelja ML, Nguyen PT, Hay DL, Bourgault S. Converting the Amyloidogenic Islet Amyloid Polypeptide into a Potent Nonaggregating Peptide Ligand by Side Chain-to-Side Chain Macrocyclization. J Am Chem Soc 2024; 146:25513-25526. [PMID: 39225636 DOI: 10.1021/jacs.4c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The islet amyloid polypeptide (IAPP), also known as amylin, is a hormone playing key physiological roles. However, its aggregation and deposition in the pancreatic islets are associated with type 2 diabetes. While this peptide adopts mainly a random coil structure in solution, its secondary conformational conversion into α-helix represents a critical step for receptor activation and contributes to amyloid formation and associated cytotoxicity. Considering the large conformational landscape and high amyloidogenicity of the peptide, as well as the complexity of the self-assembly process, it is challenging to delineate the delicate interplay between helical folding, peptide aggregation, and receptor activation. In the present study, we probed the roles of helical folding on the function-toxicity duality of IAPP by restricting its conformational ensemble through side chain-to-side chain stapling via azide-alkyne cycloaddition. Intramolecular macrocyclization (i; i + 4) constrained IAPP into α-helix and inhibited its aggregation into amyloid fibrils. These helical derivatives slowed down the self-assembly of unmodified IAPP. Site-specific macrocyclization modulated the capacity of IAPP to perturb lipid bilayers and cell plasma membrane and reduced, or even fully inhibited, the cytotoxicity associated with aggregation. Furthermore, the α-helical IAPP analogs showed moderate to high potency toward cognate G protein-coupled receptors. Overall, these results indicate that macrocyclization represents a promising strategy to protect an amyloidogenic peptide hormone from aggregation and associated toxicity, while maintaining high receptor activity.
Collapse
Affiliation(s)
- Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 3A Symonds Street, Auckland 92019, New Zealand
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| |
Collapse
|
2
|
Elenbaas BO, Kremsreiter SM, Khemtemourian L, Killian JA, Sinnige T. Fibril elongation by human islet amyloid polypeptide is the main event linking aggregation to membrane damage. BBA ADVANCES 2023; 3:100083. [PMID: 37082256 PMCID: PMC10074975 DOI: 10.1016/j.bbadva.2023.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) is linked to the death of pancreatic β-cells in type II diabetes. The process of fibril formation by hIAPP is thought to cause membrane damage, but the precise mechanisms are still unclear. Previously, we showed that the aggregation of hIAPP in the presence of membranes containing anionic lipids is dominated by secondary nucleation events, which occur at the interface between existing fibrils and the membrane surface. Here, we used vesicles with different lipid composition to explore the connection between hIAPP aggregation and vesicle leakage. We found that different anionic lipids promote hIAPP aggregation to the same extent, whereas remarkably stochastic behaviour is observed on purely zwitterionic membranes. Vesicle leakage induced by hIAPP consists of two distinct phases for any of the used membrane compositions: (i) an initial phase in which hIAPP binding causes a certain level of leakage that is strongly dependent on osmotic conditions, membrane composition and the used dye, and (ii) a main leakage event that we attribute to elongation of hIAPP fibrils, based on seeded experiments. Altogether, our results shed more light on the relationship between hIAPP fibril formation and membrane damage, and strongly suggest that oligomeric intermediates do not considerably contribute to vesicle leakage.
Collapse
Affiliation(s)
- Barend O.W. Elenbaas
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Stefanie M. Kremsreiter
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Lucie Khemtemourian
- Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN), CNRS UMR5248, University of Bordeaux, Bordeaux INP, allée Geoffroy St-Hilaire, 33600, Pessac, France
| | - J. Antoinette Killian
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Tessa Sinnige
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Corresponding author.
| |
Collapse
|
3
|
Guillemain G, Lacapere JJ, Khemtemourian L. Targeting hIAPP fibrillation: A new paradigm to prevent β-cell death? BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184002. [PMID: 35868406 DOI: 10.1016/j.bbamem.2022.184002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Loss of pancreatic β-cell mass is deleterious for type 2 diabetes patients since it reduces insulin production, critical for glucose homeostasis. The main research axis developed over the last few years was to generate new pancreatic β-cells or to transplant pancreatic islets as occurring for some specific type 1 diabetes patients. We evaluate here a new paradigm consisting in preservation of β-cells by prevention of human islet amyloid polypeptide (hIAPP) oligomers and fibrils formation leading to pancreatic β-cell death. We review the hIAPP physiology and the pathology that contributes to β-cell destruction, deciphering the various cellular steps that could be involved. Recent progress in understanding other amyloidosis such as Aβ, Tau, α-synuclein or prion, involved in neurodegenerative processes linked with inflammation, has opened new research lines of investigations to preserve neuronal cells. We evaluate and estimate their transposition to the pancreatic β-cells preservation. Among them is the control of reactive oxygen species (ROS) production occurring with inflammation and the possible implication of the mitochondrial translocator protein as a diagnostic and therapeutic target. The present review also focuses on other amyloid forming proteins from molecular to physiological and physiopathological points of view that could help to better decipher hIAPP-induced β-cell death mechanisms and to prevent hIAPP fibril formation.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Sorbonne Université, Institut Hospitalo-Universitaire, Inserm UMR_S938, Institute of Cardio metabolism and Nutrition (ICAN), Centre de recherche de St-Antoine (CRSA), 27 rue de Chaligny, F-75012 Paris, France.
| | - Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS UMR 7203, Laboratoire des BioMolécules (LBM), 4 place Jussieu, F-75005 Paris, France.
| | - Lucie Khemtemourian
- CBMN, CNRS UMR 5248, IPB, Univ. Bordeaux, Allée Geoffroy Saint-Hilaire, F-33600 Pessac, France.
| |
Collapse
|
4
|
Yu F, Wang Y, Teng Y, Yang S, He Y, Zhang Z, Yang H, Ding CF, Zhou P. Interaction and Inhibition of a Ganoderma lucidum Proteoglycan on PTP1B Activity for Anti-diabetes. ACS OMEGA 2021; 6:29804-29813. [PMID: 34778653 PMCID: PMC8582033 DOI: 10.1021/acsomega.1c04244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and an effective target for the treatment of type 2 diabetes (T2D). A natural hyperbranched proteoglycan extracted from Ganoderma lucidum, namely, Fudan-Yueyang G. Lucidum (FYGL), was demonstrated capable of inhibiting the activity of PTP1B. Here, to identify the effective active components of FYGL, three different components, the polysaccharide FYGL-1, proteoglycans FYGL-2, and FYGL-3, were isolated from FYGL, and then, the protein moiety of FYGL-3 was further separated, namely, FYGL-3-P. Their abilities to enhance the glucose uptake in cells and inhibit the activity of PTP1B were compared. The inhibitory mechanisms were systematically explored by spectroscopic methods and MD simulations. The results showed that FYGL-3 and FYGL-3-P significantly enhanced the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, detected by the glucose oxidase method. Also, the FYGL-3-P protein moiety in FYGL played an essential role in inhibiting the activity of PTP1B. A strong, enthalpy-driven, and multitargeted interaction by electrostatic forces between PTP1B and FYGL-3-P dramatically inhibited the catalytic activity of PTP1B. These results provided deep insights into the molecular mechanisms of FYGL inhibiting the activity of PTP1B and structurally helped researchers seek natural PTP1B inhibitors.
Collapse
Affiliation(s)
- Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yingxin Wang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yilong Teng
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shutong Yang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P. R. China
| | - Chuan-Fan Ding
- Department
of Chemistry, Fudan University, Shanghai 200433, China
- Zhejiang
Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular
Analysis, Institute of Mass Spectrometry, School of Material Science
and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- . Phone/Fax: (+86)021-31244038
| |
Collapse
|
5
|
The thermodynamic and kinetic mechanisms of a Ganoderma lucidum proteoglycan inhibiting hIAPP amyloidosis. Biophys Chem 2021; 280:106702. [PMID: 34741991 DOI: 10.1016/j.bpc.2021.106702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Ganoderma lucidum is a valuable medicinal herbal which has been reported to prevent type 2 diabetes (T2D). A natural hyperbranched proteoglycan extracted from Ganoderma lucidum, namely, FYGL, has been demonstrated to inhibit the amyloidosis of human islet amyloid polypeptide (hIAPP) previously by our lab. However, the effective active components and the mechanisms of FYGL in inhibiting hIAPP amyloidosis are unknown. To identify the effective active components, different components from FYGL were isolated: the polysaccharide FYGL-1, the proteoglycans of FYGL-2 and FYGL-3. We further separated and sequenced the protein moieties of FYGL-2 and FYGL-3, namely, FYGL-2-P and FYGL-3-P, respectively, and compared their abilities to inhibit hIAPP amyloidosis, and systematically explored the inhibitory mechanisms by spectroscopy, microscopy and molecular dynamic simulation methods. Results showed that the protein moieties of FYGL played essential roles in inhibiting hIAPP amyloidosis. The strong, specific, and enthalpy-driven interaction by π-π stacking and electrostatic forces between hIAPP and FYGL-3-P dramatically inhibited hIAPP amyloidosis. These results suggested that FYGL-3-P had enormous potential to prevent hIAPP misfolding-induced diabetes and structurally helped researchers to seek or design inhibitors against polypeptide amyloidosis.
Collapse
|
6
|
Lesma J, Bizet F, Berardet C, Tonali N, Pellegrino S, Taverna M, Khemtemourian L, Soulier JL, van Heijenoort C, Halgand F, Ha-Duong T, Kaffy J, Ongeri S. β-Hairpin Peptide Mimics Decrease Human Islet Amyloid Polypeptide (hIAPP) Aggregation. Front Cell Dev Biol 2021; 9:729001. [PMID: 34604227 PMCID: PMC8481668 DOI: 10.3389/fcell.2021.729001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid diseases are degenerative pathologies, highly prevalent today because they are closely related to aging, that have in common the erroneous folding of intrinsically disordered proteins (IDPs) which aggregate and lead to cell death. Type 2 Diabetes involves a peptide called human islet amyloid polypeptide (hIAPP), which undergoes a conformational change, triggering the aggregation process leading to amyloid aggregates and fibers rich in β-sheets mainly found in the pancreas of all diabetic patients. Inhibiting the aggregation of amyloid proteins has emerged as a relevant therapeutic approach and we have recently developed the design of acyclic flexible hairpins based on peptidic recognition sequences of the amyloid β peptide (Aβ1–42) as a successful strategy to inhibit its aggregation involved in Alzheimer’s disease. The present work reports the extension of our strategy to hIAPP aggregation inhibitors. The design, synthesis, conformational analyses, and biophysical evaluations of dynamic β-hairpin like structures built on a piperidine-pyrrolidine β-turn inducer are described. By linking to this β-turn inducer three different arms (i) pentapeptide, (ii) tripeptide, and (iii) α/aza/aza/pseudotripeptide, we demonstrate that the careful selection of the peptide-based arms from the sequence of hIAPP allowed to selectively modulate its aggregation, while the peptide character can be decreased. Biophysical assays combining, Thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis, and mass spectrometry showed that the designed compounds inhibit both the oligomerization and the fibrillization of hIAPP. They are also capable to decrease the aggregation process in the presence of membrane models and to strongly delay the membrane-leakage induced by hIAPP. More generally, this work provides the proof of concept that our rational design is a versatile and relevant strategy for developing efficient and selective inhibitors of aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Jacopo Lesma
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Faustine Bizet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Corentin Berardet
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France.,Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolo Tonali
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sara Pellegrino
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini," Università degli Studi di Milano, Milan, Italy
| | - Myriam Taverna
- Institute Galien Paris-Saclay, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Lucie Khemtemourian
- Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Polytechnique Bordeaux, CNRS UMR 5248, Université de Bordeaux, Pessac, France
| | | | - Carine van Heijenoort
- ICSN, Equipe Biologie et Chimie Structurales, Département de Chimie et Biologie Structurales et Analytiques, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Equipe Chimie Analytique Physicochimie Réactivité des Ions, CNRS, Université Paris-Saclay, Orsay, France
| | - Tâp Ha-Duong
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
7
|
Babych M, Nguyen PT, Côté-Cyr M, Kihal N, Quittot N, Golizeh M, Sleno L, Bourgault S. Site-Specific Alkylation of the Islet Amyloid Polypeptide Accelerates Self-Assembly and Potentiates Perturbation of Lipid Membranes. Biochemistry 2021; 60:2285-2299. [PMID: 34264642 DOI: 10.1021/acs.biochem.1c00308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accumulation of insoluble amyloids in the pancreatic islets is a pathological hallmark of type II diabetes and correlates closely with the loss of β-cell mass. The predominant component of these amyloid deposits is the islet amyloid polypeptide (IAPP). The factors contributing to the conversion of IAPP from a monomeric bioactive peptide hormone into insoluble amyloid fibrils remain partially elusive. In this study, we investigated the effect of the oxidative non-enzymatic post-translational modification induced by the reactive metabolite 4-hydroxynonenal (HNE) on IAPP aggregation and cytotoxicity. Incubation of IAPP with exogenous HNE accelerated its self-assembly into β-sheet fibrils and led to the formation of a Michael adduct on the His-18 side chain. To model this covalent modification, the imidazole N(π) position of histidine was alkylated using a close analogue of HNE, the octyl chain. IAPP lipidated at His-18 showed a hastened random coil-to-β-sheet conformational conversion into fibrillar assemblies with a distinct morphology, a low level of binding to thioflavin T, and a high surface hydrophobicity. Introducing an octyl chain on His-18 enhanced the ability of the peptide to perturb synthetic lipid vesicles, to permeabilize the plasma membrane, and to induce the death of pancreatic β-cells. Alkylated IAPP triggered the self-assembly of unmodified IAPP by prompting primary nucleation and increased its capacity to perturb the plasma membrane, indicating that only a small proportion of the modified peptide is necessary to shift the balance toward the formation of proteotoxic species. This study underlines the importance of studying IAPP post-translational modifications induced by oxidative metabolites in the context of pancreatic amyloids.
Collapse
Affiliation(s)
- Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Nadjib Kihal
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Noé Quittot
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| | - Makan Golizeh
- Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Edmonton, AB T5B 4E4, Canada
| | - Lekha Sleno
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, http://proteo.ca/en/
| |
Collapse
|
8
|
Christensen M, Berglund NA, Schiøtt B. The Effect of Cholesterol on Membrane-Bound Islet Amyloid Polypeptide. Front Mol Biosci 2021; 8:657946. [PMID: 33968989 PMCID: PMC8100463 DOI: 10.3389/fmolb.2021.657946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/26/2021] [Indexed: 11/15/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a proposed cause of the decreased beta-cell mass in patients with type-II diabetes. The molecular composition of the cell-membrane is important for regulating IAPP cytotoxicity and aggregation. Cholesterol is present at high concentrations in the pancreatic beta-cells, and in-vitro experiments have indicated that it affects the amyloid formation of IAPP either by direct interactions or by changing the properties of the membrane. In this study we apply atomistic, unbiased molecular dynamics simulations at a microsecond timescale to investigate the effect of cholesterol on membrane bound IAPP. Simulations were performed with various combinations of cholesterol, phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. In all simulations, the helical structure of monomer IAPP was stabilized by the membrane. We found that cholesterol decreased the insertion depth of IAPP compared to pure phospholipid membranes, while PS lipids counteract the effect of cholesterol. The aggregation propensity has previously been proposed to correlate with the insertion depth of IAPP, which we found to decrease with the increased ordering of the lipids induced by cholesterol. Cholesterol is depleted in the vicinity of IAPP, and thus our results suggest that the effect of cholesterol is indirect.
Collapse
Affiliation(s)
- Mikkel Christensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Khemtemourian L, Antoniciello F, Sahoo BR, Decossas M, Lecomte S, Ramamoorthy A. Investigation of the effects of two major secretory granules components, insulin and zinc, on human-IAPP amyloid aggregation and membrane damage. Chem Phys Lipids 2021; 237:105083. [PMID: 33887213 DOI: 10.1016/j.chemphyslip.2021.105083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic peptide found in pancreatic islets of type-2 diabetes (T2D) patients. Under certain conditions, hIAPP is able to form amyloid fibrils that play a role in the progression of T2D. hIAPP is synthesized in the β-cell of the pancreas and stored in the secretory granules before being released into the extracellular compartment. It has been suggested that natural stabilizing agents, such as insulin or zinc present in the secretory granules with hIAPP could prevent hIAPP fibril formation. The difference in the amino acid sequences of IAPP among species strongly correlates with amyloidogenicity and toxicity. The residue histidine at position 18 is known to be important in modulating the fibril formation, membrane leakage and toxicity. In this study, we have synthesized four analogues of hIAPP (H18R-IAPP, H18K-IAPP, H18A-IAPP and H18E-IAPP) and characterized their aggregation with either insulin or zinc in order to determine the effect of the residue-18 on the insulin-IAPP and zinc-IAPP interactions using a variety of biophysical experiments including thioflavin-T fluorescence, transmission electron microscopy imaging, circular dichroism, and NMR spectroscopy. We show that insulin reduced hIAPP fibril formation both in solution and in the presence of membrane and hIAPP-membrane damage and that the interactions are somewhat mediated by the residue-18. In addition, our results reveal that zinc affects the process of hIAPP fibril formation in solution but not in the presence of membrane. Our results indicate that the nature of the residue-18 is important for zinc binding. Based on this observation, we hypothesize that zinc binds to the residues in the N-terminal region of hIAPP, which is not accessible in the presence of membrane due to its strong interaction with lipids.
Collapse
Affiliation(s)
| | | | - Bikash R Sahoo
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Marion Decossas
- CBMN, CNRS UMR 5248, IPB, Univ. Bordeaux, F-33600 Pessac, France
| | - Sophie Lecomte
- CBMN, CNRS UMR 5248, IPB, Univ. Bordeaux, F-33600 Pessac, France
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
10
|
Abstract
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2 diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic properties of amyloid aggregates are correlated with their ability to damage cell membranes. However, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be completely elucidated. This review aims at describing the mutual relationships linking abnormal protein conformational transition and self-assembly into amyloid aggregates with membrane damage. A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of effective therapies.
Collapse
|
11
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
12
|
Liu Y, Zhang D, Zhang Y, Tang Y, Xu L, He H, Wu J, Zheng J. Molecular Dynamics Simulations of Cholesterol Effects on the Interaction of hIAPP with Lipid Bilayer. J Phys Chem B 2020; 124:7830-7841. [DOI: 10.1021/acs.jpcb.0c05742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
13
|
Saravanan MS, Ryazanov S, Leonov A, Nicolai J, Praest P, Giese A, Winter R, Khemtemourian L, Griesinger C, Killian JA. The small molecule inhibitor anle145c thermodynamically traps human islet amyloid peptide in the form of non-cytotoxic oligomers. Sci Rep 2019; 9:19023. [PMID: 31836748 PMCID: PMC6911113 DOI: 10.1038/s41598-019-54919-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes (T2DM) is associated with aggregation of the human islet amyloid polypeptide (hIAPP) into cytotoxic amyloid species. Here we tested the effect of a diphenylpyrazole (DPP)-derived small molecule inhibitor, anle145c, on cytotoxicity and on aggregation properties of hIAPP. We demonstrate that incubation of hIAPP with the inhibitor yields ~10 nm-sized non-toxic oligomers, independent of the initial aggregation state of hIAPP. This suggests that anle145c has a special mode of action in which anle145c-stabilized oligomers act as a thermodynamic sink for the preferred aggregation state of hIAPP and anle145c. We also demonstrate that the inhibitor acts in a very efficient manner, with sub-stoichiometric concentrations of anle145c being sufficient to (i) inhibit hIAPP-induced death of INS-1E cells, (ii) prevent hIAPP fibril formation in solution, and (iii) convert preformed hIAPP fibrils into non-toxic oligomers. Together, these results indicate that anle145c is a promising candidate for inhibition of amyloid formation in T2DM.
Collapse
Affiliation(s)
- Manikam S Saravanan
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sergey Ryazanov
- NMR based structural biology, MPI for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Andrei Leonov
- NMR based structural biology, MPI for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Janine Nicolai
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto Hahn Str. 4a, D-44221, Dortmund, Germany
| | - Patrique Praest
- Medical Microbiology, University Medical Center Utrecht, 3684CX, Utrecht, The Netherlands
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians - University München, München, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto Hahn Str. 4a, D-44221, Dortmund, Germany
| | - Lucie Khemtemourian
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, F-75005, Paris, France.
- Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN), CNRS UMR5248, University of Bordeaux, Bordeaux INP, allée Geoffroy St-Hilaire, 33600, Pessac, France.
| | - Christian Griesinger
- NMR based structural biology, MPI for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
- DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - J Antoinette Killian
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Ewald M, Henry S, Lambert E, Feuillie C, Bobo C, Cullin C, Lecomte S, Molinari M. High speed atomic force microscopy to investigate the interactions between toxic Aβ 1-42 peptides and model membranes in real time: impact of the membrane composition. NANOSCALE 2019; 11:7229-7238. [PMID: 30924478 DOI: 10.1039/c8nr08714h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to an aging population, neurodegenerative diseases have become a major health issue, the most common being Alzheimer's disease. The mechanisms leading to neuronal loss still remain unclear but recent studies suggest that soluble Aβ oligomers have deleterious effects on neuronal membranes. Here, high-speed atomic force microscopy was used to assess the effect of oligomeric species of a variant of Aβ1-42 amyloid peptide on model membranes with various lipid compositions. Results showed that the peptide does not interact with membranes composed of phosphatidylcholine and sphingomyelin. Ganglioside GM1, but not cholesterol, is required for the peptide to interact with the membrane. Interestingly, when they are both present, a fast disruption of the membrane was observed. It suggests that the presence of ganglioside GM1 and cholesterol in membranes promotes the interaction of the oligomeric Aβ1-42 peptide with the membrane. This interaction leads to the membrane's destruction in a few seconds. This study highlights the power of high-speed atomic force microscopy to explore lipid-protein interactions with high spatio-temporal resolution.
Collapse
Affiliation(s)
- M Ewald
- LRN EA 4682, Université de Reims Champagne-Ardenne, F-51685 Reims, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hao R, Li Y, Guan L, Lu T, Meng F, Wang C, Li F. Cholesterol-sensing role of phenylalanine in the interaction of human islet amyloid polypeptide with lipid bilayers. RSC Adv 2018; 8:40581-40588. [PMID: 35557876 PMCID: PMC9091444 DOI: 10.1039/c8ra07310d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022] Open
Abstract
The interactions between hIAPP and the pancreatic β-cells are associated with β-cell death in type II diabetes. Cholesterol modulates hIAPP-membrane interaction and hIAPP aggregation. The molecular mechanism underlying this is not well understood. Here we explore the cholesterol-sensing role of F15 in the interactions of hIAPP and hIAPP1-19 with various compositions of lipids, including DOPC, DPPC and DOPC/DPPC using NMR, CD, ThT fluorescence and dye leakage assays. We show that both hIAPP and hIAPP1-19 are more potent in the disruption to the membranes with cholesterol than they are in the disruption to the membranes without cholesterol. A substitution of F15 by leucine affects the binding and disruption of the peptides to the membranes slightly in the absence of cholesterol, but decreases the activities largely in the presence of cholesterol. F15 also plays a role in accelerating fibrillar assembly of hIAPP, but the function is independent of cholesterol in nature. The promotion of cholesterol to the disruptive potency of hIAPP is more effective in the membrane with raft-like domains than in the membrane with a dispersed distribution of cholesterol. Our results suggest that F15 plays a key role in the cholesterol-sensing binding and disruption of hIAPP to the PC membranes and the distribution of cholesterol in the membranes has an influence on the disruptive activity of hIAPP.
Collapse
Affiliation(s)
- Ruijie Hao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University 2699 Qianjin Avenue Changchun 130012 P. R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University 2699 Qianjin Avenue Changchun 130012 P. R. China
| | - Liping Guan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University 2699 Qianjin Avenue Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University 2699 Qianjin Avenue Changchun 130012 P. R. China
| | - Feihong Meng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University 2699 Qianjin Avenue Changchun 130012 P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University 2699 Qianjin Avenue Changchun 130012 P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University 2699 Qianjin Avenue Changchun 130012 P. R. China
| |
Collapse
|
16
|
Hoffmann AR, Saravanan MS, Lequin O, Killian JA, Khemtemourian L. A single mutation on the human amyloid polypeptide modulates fibril growth and affects the mechanism of amyloid-induced membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1783-1792. [DOI: 10.1016/j.bbamem.2018.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
|
17
|
Ridgway Z, Zhang X, Wong AG, Abedini A, Schmidt AM, Raleigh DP. Analysis of the Role of the Conserved Disulfide in Amyloid Formation by Human Islet Amyloid Polypeptide in Homogeneous and Heterogeneous Environments. Biochemistry 2018; 57:3065-3074. [PMID: 29697253 DOI: 10.1021/acs.biochem.8b00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is a hormone secreted from β-cells in the Islets of Langerhans in response to the same stimuli that lead to insulin secretion. hIAPP plays an adaptive role in glucose homeostasis but misfolds to form insoluble, fibrillar aggregates in type II diabetes that are associated with the disease. Along the misfolding pathway, hIAPP forms species that are toxic to β-cells, resulting in reduced β-cell mass. hIAPP contains a strictly conserved disulfide bond between residues 2 and 7, which forms a small loop at the N-terminus of the molecule. The loop is located outside of the cross β-core in all models of the hIAPP amyloid fibrils. Mutations in this region are rare, and the disulfide loop plays a role in receptor binding; however, the contribution of this region to the aggregation of hIAPP is not well understood. We define the role of the disulfide by analyzing a collection of analogues that remove the disulfide, by mutation of Cys to Ser, by reduction and modification of the Cys residues, or by deletion of the first seven residues. The cytotoxic properties of hIAPP are retained in the Cys to Ser disulfide-free mutant. Removal of the disulfide bond accelerates amyloid formation in all constructs, both in solution and in the presence of model membranes. Removal of the disulfide weakens the ability of hIAPP to induce leakage of vesicles consisting of POPS and POPC. Smaller effects are observed with vesicles that contain 40 mol % cholesterol, although N-terminal truncation still reduces the extent of leakage.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Xiaoxue Zhang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Amy G Wong
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Daniel P Raleigh
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States.,Laufer Center for Quantitative Biology , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
18
|
Rawat A, Langen R, Varkey J. Membranes as modulators of amyloid protein misfolding and target of toxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1863-1875. [PMID: 29702073 DOI: 10.1016/j.bbamem.2018.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
Abnormal protein aggregation is a hallmark of various human diseases. α-Synuclein, a protein implicated in Parkinson's disease, is found in aggregated form within Lewy bodies that are characteristically observed in the brains of PD patients. Similarly, deposits of aggregated human islet amyloid polypeptide (IAPP) are found in the pancreatic islets in individuals with type 2 diabetes mellitus. Significant number of studies have focused on how monomeric, disaggregated proteins transition into various amyloid structures leading to identification of a vast number of aggregation promoting molecules and processes over the years. Inasmuch as these factors likely enhance the formation of toxic, misfolded species, they might act as risk factors in disease. Cellular membranes, and particularly certain lipids, are considered to be among the major players for aggregation of α-synuclein and IAPP, and membranes might also be the target of toxicity. Past studies have utilized an array of biophysical tools, both in vitro and in vivo, to expound the membrane-mediated aggregation. Here, we focus on membrane interaction of α-synuclein and IAPP, and how various kinds of membranes catalyze or modulate the aggregation of these proteins and how, in turn, these proteins disrupt membrane integrity, both in vitro and in vivo. The membrane interaction and subsequent aggregation has been briefly contrasted to aggregation of α-synuclein and IAPP in solution. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Anoop Rawat
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| | - Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
19
|
Zhang X, London E, Raleigh DP. Sterol Structure Strongly Modulates Membrane-Islet Amyloid Polypeptide Interactions. Biochemistry 2018; 57:1868-1879. [PMID: 29373018 DOI: 10.1021/acs.biochem.7b01190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amyloid formation has been implicated in a wide range of human diseases, and the interaction of amyloidogenic proteins with membranes are believed to be important for many of them. In type-2 diabetes, human islet amyloid polypeptide (IAPP) forms amyloids, which contribute to β-cell death and dysfunction in the disease. IAPP-membrane interactions are potential mechanisms of cytotoxicity. In vitro studies have shown that cholesterol significantly modulates the ability of model membranes to induce IAPP amyloid formation and IAPP-mediated membrane damage. It is not known if this is due to the general effects of cholesterol on membranes or because of specific sterol-IAPP interactions. The effects of replacing cholesterol with eight other sterols/steroids on IAPP binding to model membranes, membrane disruption, and membrane-mediated amyloid formation were examined. The primary effect of the sterols/steroids on the IAPP-membrane interactions was found to reflect their effect upon membrane order as judged by fluorescence anisotropy measurements. Specific IAPP-sterol/steroid interactions have smaller effects. The fraction of vesicles that bind IAPP was inversely correlated with the sterols/steroids' effect on membrane order, as was the extent of IAPP-induced membrane leakage and the time to form amyloids. The correlation between the fraction of vesicles binding IAPP and membrane leakage was particularly tight, suggesting the restriction of IAPP to a subset of vesicles is responsible for incomplete leakage.
Collapse
|
20
|
Henry S, Bercu NB, Bobo C, Cullin C, Molinari M, Lecomte S. Interaction of Aβ 1-42 peptide or their variant with model membrane of different composition probed by infrared nanospectroscopy. NANOSCALE 2018; 10:936-940. [PMID: 29292465 DOI: 10.1039/c7nr07489a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Toxicity of Aβ peptides involved in Alzheimer's disease is linked to the interaction of intermediate species with membranes. Nanoscale Infrared Spectroscopy enhances the study of the morphology and the secondary structure of the peptides as fibers or oligomers interacting with membranes of different compositions, with nanometer scale resolution. Membrane models are used to investigate the role of different lipids in their interactions with Aβ peptides. This work clearly brings to light that the presence of cholesterol in membranes is favorable to the interaction with Aβ peptides in oligomers or aggregates.
Collapse
Affiliation(s)
- S Henry
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, 33607 Pessac, France.
| | | | | | | | | | | |
Collapse
|
21
|
Hoffmann ARF, Caillon L, Salazar Vazquez LS, Spath PA, Carlier L, Khemtémourian L, Lequin O. Time dependence of NMR observables reveals salient differences in the accumulation of early aggregated species between human islet amyloid polypeptide and amyloid-β. Phys Chem Chem Phys 2018; 20:9561-9573. [DOI: 10.1039/c7cp07516b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proton NMR shows that IAPP fibril formation does not involve the accumulation of early aggregated species, in contrast with Aβ.
Collapse
Affiliation(s)
- Anaïs R. F. Hoffmann
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Lucie Caillon
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | | | - Pierre-Alexandre Spath
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Ludovic Carlier
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Lucie Khemtémourian
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| | - Olivier Lequin
- Sorbonne Université
- Ecole Normale Supérieure
- PSL University
- CNRS
- Laboratoire des Biomolécules (LBM)
| |
Collapse
|
22
|
Christensen M, Skeby KK, Schiøtt B. Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment. Biochemistry 2017; 56:4884-4894. [PMID: 28786287 DOI: 10.1021/acs.biochem.7b00344] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.
Collapse
Affiliation(s)
- Mikkel Christensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark.,Sino-Danish Center for Education and Research , Beijing, China
| | - Katrine K Skeby
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
23
|
Zhang X, St Clair JR, London E, Raleigh DP. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. Biochemistry 2017; 56:376-390. [PMID: 28054763 DOI: 10.1021/acs.biochem.6b01016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid formation by islet amyloid polypeptide (IAPP) contributes to β-cell dysfunction in type 2 diabetes. Perturbation of the β-cell membrane may contribute to IAPP-induced toxicity. We examine the effects of lipid composition, salt, and buffer on IAPP amyloid formation and on the ability of IAPP to induce leakage of model membranes. Even low levels of anionic lipids promote amyloid formation and membrane permeabilization. Increasing the percentage of the anionic lipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) or 1,2-dioleoyl-sn-glycero-3-phospho(1'-rac-glycerol), enhances the rate of amyloid formation and increases the level of membrane permeabilization. The choice of zwitterionic lipid has no noticeable effect on membrane-catalyzed amyloid formation but in most cases affects leakage, which tends to decrease in the following order: 1,2-dioleoyl-sn-glycero-3-phosphocholine > 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine > sphingomyelin. Uncharged lipids that increase the level of membrane order weaken the ability of IAPP to induce leakage. Leakage is due predominately to pore formation rather than complete disruption of the vesicles under the conditions used in these studies. Cholesterol at or below physiological levels significantly reduces the rate of vesicle-catalyzed IAPP amyloid formation and decreases the susceptibility to IAPP-induced leakage. The effects of cholesterol on amyloid formation are masked by 25 mol % POPS. Overall, there is a strong inverse correlation between the time to form amyloid and the extent of vesicle leakage. NaCl reduces the rate of membrane-catalyzed amyloid formation by anionic vesicles, but accelerates amyloid formation in solution. The implications for IAPP membrane interactions are discussed, as is the possibility that the loss of phosphatidylserine asymmetry enhances IAPP amyloid formation and membrane damage in vivo via a positive feedback loop.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Johnna R St Clair
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794-5215, United States
| | - Erwin London
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794-5215, United States
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York 11794-5215, United States
| |
Collapse
|
24
|
Li Y, Guan L, Lu T, Li H, Li Z, Li F. Interactions of the N-terminal domain of human islet amyloid polypeptide with lipid membranes: the effect of cholesterol. RSC Adv 2016. [DOI: 10.1039/c6ra19714k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholesterol facilitates the insertion and aggregation of hIAPP1–19 in membrane and the CARC motif mediates the peptide–cholesterol interaction.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Liping Guan
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Haichao Li
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
25
|
Akter R, Cao P, Noor H, Ridgway Z, Tu LH, Wang H, Wong AG, Zhang X, Abedini A, Schmidt AM, Raleigh DP. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J Diabetes Res 2015; 2016:2798269. [PMID: 26649319 PMCID: PMC4662979 DOI: 10.1155/2016/2798269] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/24/2015] [Indexed: 01/29/2023] Open
Abstract
The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.
Collapse
Affiliation(s)
- Rehana Akter
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Harris Noor
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Hui Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Amy G. Wong
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Xiaoxue Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Andisheh Abedini
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Research Department of Structural and Molecule Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|