1
|
Traish AM, Vignozzi L, Simon JA, Goldstein I, Kim NN. Role of Androgens in Female Genitourinary Tissue Structure and Function: Implications in the Genitourinary Syndrome of Menopause. Sex Med Rev 2018; 6:558-571. [PMID: 29631981 DOI: 10.1016/j.sxmr.2018.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Genitourinary conditions in women increase in prevalence with age. Androgens are prerequisite hormones of estrogen biosynthesis, are produced in larger amounts than estrogens in women, and decrease throughout adulthood. However, research and treatment for genitourinary complaints have traditionally focused on estrogens to the exclusion of other potential hormonal influences. AIM To summarize and evaluate the evidence that androgens are important for maintaining genitourinary health in women and that lack of androgenic activity can contribute to the development of symptoms of the genitourinary syndrome of menopause. METHODS The role of androgens in the pathophysiology, diagnosis, and treatment of genitourinary syndrome of menopause was discussed by an international and multidisciplinary panel during a consensus conference organized by the International Society for the Study of Women's Sexual Health. A subgroup further examined publications from the PubMed database, giving preference to clinical studies or to basic science studies in human tissues. MAIN OUTCOME MEASURES Expert opinion evaluating trophic and functional effects of androgens, their differences from estrogenic effects, and regulation of androgen and estrogen receptor expression in female genitourinary tissues. RESULTS Androgen receptors have been detected throughout the genitourinary system using immunohistochemical, western blot, ligand binding, and gene expression analyses. Lower circulating testosterone and estradiol concentrations and various genitourinary conditions have been associated with differential expression of androgen and estrogen receptors. Supplementation of androgen and/or estrogen in postmenopausal women (local administration) or in ovariectomized animals (systemic administration) induces tissue-specific responses that include changes in androgen and estrogen receptor expression, cell growth, mucin production, collagen turnover, increased perfusion, and neurotransmitter synthesis. CONCLUSION Androgens contribute to the maintenance of genitourinary tissue structure and function. The effects of androgens can be distinct from those of estrogens or can complement estrogenic action. Androgen-mediated processes might be involved in the full or partial resolution of genitourinary syndrome of menopause symptoms in women. Traish AM, Vignozzi L, Simon JA, et al. Role of Androgens in Female Genitourinary Tissue Structure and Function: Implications in the Genitourinary Syndrome of Menopause. Sex Med Rev 2018;6:558-571.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, MA, USA
| | - Linda Vignozzi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - James A Simon
- Women's Health & Research Consultants, Department of Obstetrics and Gynecology, George Washington University, Washington, DC, USA
| | | | - Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA.
| |
Collapse
|
2
|
Properties of Na,K-ATPase in cerebellum of male and female rats: effects of acute and prolonged diabetes. Mol Cell Biochem 2016; 425:25-36. [DOI: 10.1007/s11010-016-2859-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/22/2016] [Indexed: 02/07/2023]
|
3
|
Oliver VL, Poulios K, Ventura S, Haynes JM. A novel androgen signalling pathway uses dihydrotestosterone, but not testosterone, to activate the EGF receptor signalling cascade in prostate stromal cells. Br J Pharmacol 2014; 170:592-601. [PMID: 23869618 DOI: 10.1111/bph.12307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 06/26/2013] [Accepted: 07/08/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Human prostate growth and function are tightly controlled by androgens that are generally thought to exert their effects by regulating gene transcription. However, a rapid, non-genomic steroid action, often involving an elevation of intracellular calcium ([Ca(2+) ]i ), has also been described in a number of cell types. In this study we investigate whether androgens acutely regulate [Ca(2+) ]i in stromal cells derived from the human prostate. EXPERIMENTAL APPROACH Human-cultured prostatic stromal cells (HCPSCs) were loaded with the calcium-sensitive fluorophore, fura-2-acetoxymethyl ester (FURA-2AM) (10 μM). Changes in [Ca(2+) ]i in response to the androgens, dihydrotestosterone (DHT) and testosterone, as well as EGF were measured by fluorescence microscopy. KEY RESULTS DHT, but not testosterone (0.03-300 nM), elicited concentration-dependent elevations of [Ca(2+) ]i within 1 min of addition. These responses were blocked by the androgen receptor antagonist, flutamide (10 μM); the sarcoplasmic reticulum ATPase pump inhibitor, thapsigargin (1 μM); the inositol trisphosphate receptor inhibitor, 2-aminoethyldiphenyl borate (50 μM) and the PLC inhibitor, U-73122 (1 μM). Responses were also blocked by the L-type calcium channel blocker, nifedipine (1 μM), and by removal of extracellular calcium. A similar transient elevation of [Ca(2+) ]i was elicited by EGF (100 ng·mL(-1) ). The EGF receptor inhibitor, AG 1478 (30 nM), and the MMP inhibitor, marimastat (100 nM), blocked the DHT-induced elevation of [Ca(2+) ]i . CONCLUSIONS AND IMPLICATIONS These studies show that DHT elicits an androgen receptor-dependent acute elevation of [Ca(2+) ]i in HCPSC, most likely by activating EGF receptor signalling.
Collapse
Affiliation(s)
- V L Oliver
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Vic., Australia
| | | | | | | |
Collapse
|
4
|
Lang F, Alevizopoulos K, Stournaras C. Targeting membrane androgen receptors in tumors. Expert Opin Ther Targets 2013; 17:951-63. [PMID: 23746222 DOI: 10.1517/14728222.2013.806491] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last decade androgen actions that are originated from non-genomic, rapid signaling have been described in a large number of cell models and tissues. These effects are initiated through the stimulation of membrane androgen-binding sites or receptors (mAR). Although the molecular identity of mARs remains elusive, their activation is known to trigger multiple non-genomic signaling cascades and to regulate numerous cell responses. In recent years specific interest is being paid to the role of mARs in tumors. Specifically, it was demonstrated that mAR activation by non-permeable testosterone conjugates induced potent anti-tumorigenic responses in prostate, breast, colon and glial tumors. In addition, in vivo animal studies further emphasized the potential clinical importance of these receptors. AREAS COVERED This review will summarize the current knowledge on the mAR-induced non-genomic, rapid androgen actions. It will focus on the molecular signaling pathways governed by mAR activation, discuss latest attempts to elucidate the molecular identity of mAR, address the plethora of cell responses initiated by mAR and evaluate the potential role of mAR and mAR-specific signaling as possible therapeutic targets in tumors. EXPERT OPINION mAR and mAR-induced specific signaling may represent novel therapeutic targets in tumors through the development of specific testosterone analogs.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Department of Physiology, Gmelin Str. 5, Tübingen, 72076, Germany
| | | | | |
Collapse
|
5
|
Kohtz AS, Frye CA. Dissociating behavioral, autonomic, and neuroendocrine effects of androgen steroids in animal models. Methods Mol Biol 2012; 829:397-431. [PMID: 22231829 DOI: 10.1007/978-1-61779-458-2_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developments in behavioral assessment, autonomic and/or baseline reactivity, psychopharmacology, and genetics, have contributed significantly to the assessment of performance-enhancing drugs in animal models. Particular classes of steroid hormones: androgenic steroids are of interest. Anecdotally, the performance enhancing effects of androgens are attributed to anabolic events. However, there is a discrepancy between anecdotal evidence and investigative data. While some androgen steroids may promote muscle growth (myogenesis), effects of androgens on performance enhancement are not always seen. Indeed, some effects of androgens on performance may be attributable to their psychological and cardiovascular effects. As such, we consider androgen effects in terms of their behavioral, autonomic, and neuroendocrine components. Techniques are discussed in this chapter, some of which are well established, while others have been more recently developed to study androgen action. Androgens may be considered for their positive impact, negative consequence, or psychotropic properties. Thus, this review aims to elucidate some of the effects and/or mechanisms of androgens on behavioral, autonomic, and/or neuroendocrine assessment that may underlie their controversial performance enhancing effects.
Collapse
Affiliation(s)
- Amy S Kohtz
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | | |
Collapse
|
6
|
Abstract
AbstractAndrogenic anabolic steroids (AAS) are synthetic derivatives of the male hormone testosterone. AAS are used by athletes and recreational users of all ages to enhance their athletic performance and/or physical appearance. While several adverse effects of AAS abuse have been described, their effect on the immune system has not been clearly elucidated. The literature generally indicates that supraphysiologic doses of AAS with an intact steroid nucleus are immunosuppressive, that is they reduce immune cell number and function. While those with alterations to the steroid nucleus are immunostimulatory as they induce the proliferation of T cells and other immune cells. Specifically, several common AAS have been shown to adversely influence lymphocyte differentiation and proliferation, antibody production, Natural Killer Cytotoxic activity and the production of certain cytokines, thereby altering the immune reaction. These effects may be profound and long lasting depending on the dosing regime, types or combinations of AAS used and the extent and duration of AAS abuse. Nevertheless, the effects of long term use of supraphysiologic doses of AAS on the immune system remain uncertain.
Collapse
|
7
|
Farnsworth WE. The androgen receptor of the prostate plasma membrane – an hypothesis. Med Hypotheses 2004; 62:954-7. [PMID: 15142656 DOI: 10.1016/j.mehy.2004.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 01/11/2004] [Indexed: 11/26/2022]
Abstract
The hypothesis that the prostatic plasma membrane sodium pump apparatus functions as a non-genomic androgen receptor is based upon a number of its properties: (1) Androgen enhances the uptake of K(+) into minced rat prostate. (2) Ouabain, a specific inhibitor of Na/K-ATPase activity, strongly opposes the androgenic effect. (3) In non-genomic microsomes, ouabain sensitivity of the enzyme is enhanced by androgen. (4) Kinetic studies show that androgen significantly increases Vmax, Km and energy of activation of the enzyme. (5) Enzyme, treated with [gamma-(32)P]-ATP and then subjected to SDS-PAGE electrophoresis, binds only to its alpha-subunit, but, if treated with [(3)H]-DHT, shows isotope binding to the beta-subunit. (6) [(3)H]-ouabain binding to androgenized enzyme is 5.5 times greater than to the non-androgenized enzyme. (7) Treatment of the enzyme with 10(-9) M DHT enhances by 40% the binding of the ouabain derivative, anthroyl ouabain (AO). (8) Fluorescent spectra appears to show that, upon phosphorylation of the androgenized enzyme, there is a 14% approximation of the two subunits to each other. (9) Except for neuroepithelium, only the epithelium of the prostate has apically located Na/K-ATPase. Preliminary work in other labs suggests that the beta-subunit of the Na/K-ATPase may be required for establishing the polarity of some epithelial cells.
Collapse
Affiliation(s)
- Wells E Farnsworth
- Department of Urology, Feinberg School of Medicine, Northwestern University, 350 W. Schaumburg Road, D-136 Schaumburg, IL 60194, USA.
| |
Collapse
|
8
|
Mobasheri A, Pestov NB, Papanicolaou S, Kajee R, Cózar-Castellano I, Avila J, Martín-Vasallo P, Foster CS, Modyanov NN, Djamgoz MBA. Expression and cellular localization of Na,K-ATPase isoforms in the rat ventral prostate. BJU Int 2003; 92:793-802. [PMID: 14616469 DOI: 10.1046/j.1464-410x.2003.04460.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the expression and plasma membrane domain location of isoforms of Na,K-ATPase in the rat ventral prostate. MATERIALS AND METHODS Ventral prostate glands from adult male rats were dissected, cryosectioned (7 micro m) and attached to poly-l-lysine coated glass slides. The sections were then fixed in methanol and subjected to indirect immunofluorescence and immunoperoxidase procedures using a panel of well-characterized monoclonal and polyclonal antibodies raised against known Na,K-ATPase subunit isoforms. Immunofluorescence micrographs were digitally captured and analysed by image analysis software. RESULTS There was expression of Na,K-ATPase alpha1, beta1, beta2 and beta3 subunit isoforms in the lateral and basolateral plasma membrane domains of prostatic epithelial cells. The alpha1 isoform was abundant but there was no evidence of alpha2, alpha3 or gamma isoform expression in epithelial cells. The alpha3 isoform was not detected, but there was a relatively low level of alpha2 isoform expression in the smooth muscle and stroma. CONCLUSION Rat prostate Na,K-ATPase consists of alpha1/beta1, alpha1/beta2 and alpha1/beta3 isoenzymes. These isoform proteins were located in the lateral and basolateral plasma membrane domains of ventral prostatic epithelial cells. The distribution and subcellular localization of Na,K-ATPase is different in rodent and human prostate. Basolateral Na,K-ATPase probably contributes to the establishment of transepithelial ionic gradients that are a prerequisite for the uptake of metabolites by secondary active transport mechanisms and active citrate secretion.
Collapse
Affiliation(s)
- A Mobasheri
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Science, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zheng J, Ramirez VD. Rapid inhibition of rat brain mitochondrial proton F0F1-ATPase activity by estrogens: comparison with Na+, K+ -ATPase of porcine cortex. Eur J Pharmacol 1999; 368:95-102. [PMID: 10096774 DOI: 10.1016/s0014-2999(99)00012-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our earlier studies have identified oligomycin sensitivity-conferring protein (OSCP), a subunit of proton F0F1-ATPase/ATP synthase in the mitochondrial inner membranes, as a new estradiol binding protein. This finding suggests that mitochondrial ATPase/ATP synthase could be a potential target for estradiol or compounds with similar structures. Here, we report that estradiol and several other compounds inhibited F0F1-ATPase activity of detergent-solubilized rat brain mitochondrial preparations in a following decreasing order: diethylstilbestrol (half-inhibition concentration, IC50 of 10-25 microM) > alpha-zearalenol, 4-hydroxyestradiol (1C50 of 55 microM) >2-hydroxyestradiol (IC50 of 110 microM), 17beta-estradiol, 17alpha-estradiol > beta-zearalanol > estriol, testosterone, 16alpha-hydroxyestrone > corticosterone, progesterone, dehydroepiandrosterone, dehydroepiandrosterone 3-sulfate, cholesterol (less than 10% inhibition at 140 microM). On the other hand, Na+, K+ -ATPase of porcine cortex showed different sensitivity to the compounds tested above. At 70 microM, the rank of inhibitory potency in decreasing order was as follows: 2-hydroxyestradiol (IC50 of 70 microM) > diethylstilbestrol> 4-hydroxyestradiol > progesterone > alpha-zearalenol, while other compounds had little effect (less than 5%). The data indicate that the ubiquitous mitochondrial F0F1-ATPase is a specific target site for estradiol and related estrogenic compounds; however, under this in vitro condition, the effect seems to require pharmacological concentrations.
Collapse
Affiliation(s)
- J Zheng
- Department of Molecular and Integrative Physiology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | |
Collapse
|
10
|
Benten WP, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris CE, Mossmann H, Wunderlich F. Functional testosterone receptors in plasma membranes of T cells. FASEB J 1999; 13:123-33. [PMID: 9872937 DOI: 10.1096/fasebj.13.1.123] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T cells are considered to be unresponsive to testosterone due to the absence of androgen receptors (AR). Here, we demonstrate the testosterone responsiveness of murine splenic T cells in vitro as well as the presence of unconventional cell surface receptors for testosterone and classical intracellular AR. Binding sites for testosterone on the surface of both CD4(+) and CD8(+) subsets of T cells are directly revealed with the impeded ligand testosterone-BSA-FITC by confocal laser scanning microscopy (CLSM) and flow cytometry, respectively. Binding of the plasma membrane impermeable testosterone-BSA conjugate induces a rapid rise (<5 s) in [Ca2+]i of Fura-2-loaded T cells. This rise reflects influx of extracellular Ca2+ through non-voltage-gated and Ni2+-blockable Ca2+ channels of the plasma membrane. The testosterone-BSA-induced Ca2+ import is not affected by cyproterone, a blocker of the AR. In addition, AR are not detectable on the surface of intact T cells when using anti-AR antibodies directed against the amino and carboxy terminus of the AR, although T cells contain AR, as revealed by reverse transcription-polymerase chain reactions and Western blotting. AR can be visualized with the anti-AR antibodies in the cytoplasm of permeabilized T cells by using CLSM, though AR are not detectable in cytosol fractions when using the charcoal binding assay with 3H-R1881 as ligand. Cytoplasmic AR do not translocate to the nucleus of T cells in the presence of testosterone, in contrast to cytoplasmic AR in human cancer LNCaP cells. These findings suggest that the classical AR present in splenic T cells are not active in the genomic pathway. By contrast, the cell surface receptors for testosterone are in a functionally active state, enabling T cells a nongenomic response to testosterone.
Collapse
Affiliation(s)
- W P Benten
- Division of Molecular Parasitology and Centre of Biological-Medical Research, Heinrich Heine University, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Heretofore, the function of estrogen in the prostate, other than as an antiandrogen, has been unclear. In this review of a growing fund of knowledge about both estrogen and the plasma protein, sex hormone-binding globulin (SHBG), or testosterone-estradiol binding globulin (TeBG), the hypothesis is proposed that estrogen, mediated by SHBG, participates with androgen in setting the pace of prostatic growth and function. It is suggested that the estrogen not only directs stromal proliferation and secretion, but also, through IGF-I, conditions the response of the epithelium to androgen.
Collapse
Affiliation(s)
- W E Farnsworth
- Department of Urology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
12
|
Abstract
While the nucleus may play a secondary role in androgen regulation of prostatic functional and structural development, I propose that, in the fully developed gland, the pace of all metabolism, biosynthesis, secretion and reparative proliferation in the gland is coupled to and set by the action of androgen on the Na+,K(+)-ATPase of the plasma membrane. This report identifies the three questions which must be asked and affirmatively answered to verify this hypothesis: 1. Straightforward procedures for the unambiguous demonstration of the coupling of (Na+,K+)-ATPase activity to glycolysis, oxidative metabolism, protein synthesis, cell alkalinization and citrate synthesis/secretion and that addition of androgen in vitro boosts the rates of the enzyme and all its coupled processes. 2. Demonstration that the stimulatory effect of the androgen is on the specific catalytic activity of each (Na+,K+)-ATPase molecule, not on the number of these enzyme units present. 3. Provision of means to show a likely mechanism for this activation; viz. shift in enzyme conformation.
Collapse
Affiliation(s)
- W E Farnsworth
- Department of Urology, Northwestern University Medical School, Chicago, IL 60611-3009
| |
Collapse
|