Latacz G, Kieć-Kononowicz K. The stereoselectivity and hydrolysis efficiency of recombinant D-hydantoinase from Vigna angularis Against 5-benzylhydantoin derivatives with halogen and methyl substituents.
Appl Biochem Biotechnol 2014;
175:698-704. [PMID:
25342262 PMCID:
PMC4297307 DOI:
10.1007/s12010-014-1313-4]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 11/03/2022]
Abstract
The researches on D-hydantoinase activity and substrate specificity towards dihydropyrimidine and hydantoin derivatives have been carried out intensively over the last few decades. So far, the major efforts have focused on (R,S)-5-phenylhydantoin and (R,S)-5-(4-hydroxyphenyl)hydantoin, the most desirable D-hydantoinase substrates from pharmaceutical industry point of view. However, it was shown that D-hydantoinase is a substrate-dependent enzyme, and its activity and stereoselectivity towards 5-monosubstituted hydantoins varied significantly with the type of substrate and the source of the enzyme. The aim of this study was to estimate the substrate specificity of D-hydantoinase towards series of 5-benzylhydantoin derivatives with halogen and methyl substituents in the phenyl ring. The biotransformations were carried out by using commercial enzyme: immobilized, recombinant, cloned, and expressed in Escherichia coli D-hydantoinase from Vigna angularis (rD-HYD). All reactions were monitored by capillary electrophoresis (CE), and the conversion yields were calculated. Additionally, enantiomeric ratios of the obtained D-phenylalanine derivatives were estimated by chiral high-performance liquid chromatography (HPLC). Interestingly, the differences in the activities of examined enzyme towards particular 5-benzylhydantoin derivatives were observed. CE was also shown as a promising method for monitoring the hydrolysis of new substrates by D-hydantoinase and further analyzing of enzyme substrate specificity.
Collapse