1
|
Çalışkan G, Demiray YE, Stork O. Comparison of three common inbred mouse strains reveals substantial differences in hippocampal GABAergic interneuron populations and in vitro network oscillations. Eur J Neurosci 2023; 58:3383-3401. [PMID: 37550182 DOI: 10.1111/ejn.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
A major challenge in neuroscience is to pinpoint neurobiological correlates of specific cognitive and neuropsychiatric traits. At the mesoscopic level, promising candidates for establishing such connections are brain oscillations that can be robustly recorded as local field potentials with varying frequencies in the hippocampus in vivo and in vitro. Inbred mouse strains show natural variation in hippocampal synaptic plasticity (e.g. long-term potentiation), a cellular correlate of learning and memory. However, their diversity in expression of different types of hippocampal network oscillations has not been fully explored. Here, we investigated hippocampal network oscillations in three widely used inbred mouse strains: C57BL/6J (B6J), C57BL/6NCrl (B6N) and 129S2/SvPasCrl (129) with the aim to identify common oscillatory characteristics in inbred mouse strains that show aberrant emotional/cognitive behaviour (B6N and 129) and compare them to "control" B6J strain. First, we detected higher gamma oscillation power in the hippocampal CA3 of both B6N and 129 strains. Second, higher incidence of hippocampal sharp wave-ripple (SPW-R) transients was evident in these strains. Third, we observed prominent differences in the densities of distinct interneuron types and CA3 associative network activity, which are indispensable for sustainment of mesoscopic network oscillations. Together, these results add further evidence to profound physiological differences among inbred mouse strains commonly used in neuroscience research.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying MentalHealth (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena-Magdeburg-Halle, Germany
| |
Collapse
|
2
|
Madencioglu DA, Çalışkan G, Yuanxiang P, Rehberg K, Demiray YE, Kul E, Engler A, Hayani H, Bergado-Acosta JR, Kummer A, Müller I, Song I, Dityatev A, Kähne T, Kreutz MR, Stork O. Transgenic modeling of Ndr2 gene amplification reveals disturbance of hippocampus circuitry and function. iScience 2021; 24:102868. [PMID: 34381982 PMCID: PMC8340122 DOI: 10.1016/j.isci.2021.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Duplications and deletions of short chromosomal fragments are increasingly recognized as the cause for rare neurodevelopmental conditions and disorders. The NDR2 gene encodes a protein kinase important for neuronal development and is part of a microduplication region on chromosome 12 that is associated with intellectual disabilities, autism, and epilepsy. We developed a conditional transgenic mouse with increased Ndr2 expression in postmigratory forebrain neurons to study the consequences of an increased gene dosage of this Hippo pathway kinase on brain circuitry and cognitive functions. Our analysis reveals reduced terminal fields and synaptic transmission of hippocampal mossy fibers, altered hippocampal network activity, and deficits in mossy fiber-dependent behaviors. Reduced doublecortin expression and protein interactome analysis indicate that transgenic Ndr2 disturbs the maturation of granule cells in the dentate gyrus. Together, our data suggest that increased expression of Ndr2 may critically contribute to the development of intellectual disabilities upon gene amplification.
Collapse
Affiliation(s)
- Deniz A. Madencioglu
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Gürsel Çalışkan
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Pingan Yuanxiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39112Magdeburg, Germany
| | - Kati Rehberg
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Yunus E. Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Emre Kul
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Alexander Engler
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University, 39120Magdeburg, Germany
| | - Hussam Hayani
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120Magdeburg, Germany
| | - Jorge R. Bergado-Acosta
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Anne Kummer
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Iris Müller
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke-University, 39120Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University, 39120Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39112Magdeburg, Germany
- Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251Hamburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| |
Collapse
|
3
|
Çalışkan G, Raza SA, Demiray YE, Kul E, Sandhu KV, Stork O. Depletion of dietary phytoestrogens reduces hippocampal plasticity and contextual fear memory stability in adult male mouse. Nutr Neurosci 2019; 24:951-962. [PMID: 31814540 DOI: 10.1080/1028415x.2019.1698826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Phytoestrogens are non-steroidal estrogen analogues and are found primarily in soy products. They have received increasing attention as dietary supplements for estrogen deficiency and as modulators of endogenous estrogen functions, including cognition and emotion. In addition to modifying the levels of circulating sex hormones, phytoestrogens also exert direct effects on estrogen and androgen receptors in the brain and thus effectively modulate the neural circuit functions.Objective: The aim of this study was to investigate the long-term effects of low phytoestrogen intake (∼6 weeks) on the hippocampal plasticity and hippocampus-dependent memory formation in the adult C57BL/6 male mice.Methods and Results: In comparison to mice on a diet with normal phytoestrogen content, mice on low phytoestrogen diet showed a significant reduction in the phosphorylation of NR2B subunit, a molecular correlate of plasticity in the Schaffer collateral-CA1 synapse. We observed a profound decrease in long-term potentiation (LTP) in the ventral hippocampus, whereas no effect on plasticity was evident in its dorsal portion. Furthermore, we demonstrated that acute perfusion of slices with an estrogen analogue equol, an isoflovane metabolized from daidzein produced by the bacterial flora in the gut, was able to rescue the observed LTP deficit. Examining potential behavioral correlates of the plasticity attenuation, we found that mice on phytoestrogen-free diet display decreased contextual fear memory at remote but not at recent time points after training.Conclusions: Our data suggests that nutritional phytoestrogens have profound effects on the plasticity in the ventral hippocampus and ventral hippocampus-dependent memory.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Syed Ahsan Raza
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Yunus E Demiray
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emre Kul
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kiran V Sandhu
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Oliver Stork
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
4
|
Berndt N, Rösner J, Haq RU, Kann O, Kovács R, Holzhütter HG, Spies C, Liotta A. Possible neurotoxicity of the anesthetic propofol: evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices. Arch Toxicol 2018; 92:3191-3205. [PMID: 30143847 PMCID: PMC6132669 DOI: 10.1007/s00204-018-2295-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
Propofol is the most frequently used intravenous anesthetic for induction and maintenance of anesthesia. Propofol acts first and formost as a GABAA-agonist, but effects on other neuronal receptors and voltage-gated ion channels have been described. Besides its direct effect on neurotransmission, propofol-dependent impairment of mitochondrial function in neurons has been suggested to be responsible for neurotoxicity and postoperative brain dysfunction. To clarify the potential neurotoxic effect in more detail, we investigated the effects of propofol on neuronal energy metabolism of hippocampal slices of the stratum pyramidale of area CA3 at different activity states. We combined oxygen-measurements, electrophysiology and flavin adenine dinucleotide (FAD)-imaging with computational modeling to uncover molecular targets in mitochondrial energy metabolism that are directly inhibited by propofol. We found that high concentrations of propofol (100 µM) significantly decrease population spikes, paired pulse ratio, the cerebral metabolic rate of oxygen consumption (CMRO2), frequency and power of gamma oscillations and increase FAD-oxidation. Model-based simulation of mitochondrial FAD redox state at inhibition of different respiratory chain (RC) complexes and the pyruvate-dehydrogenase show that the alterations in FAD-autofluorescence during propofol administration can be explained with a strong direct inhibition of the complex II (cxII) of the RC. While this inhibition may not affect ATP availability under normal conditions, it may have an impact at high energy demand. Our data support the notion that propofol may lead to neurotoxicity and neuronal dysfunction by directly affecting the energy metabolism in neurons.
Collapse
Affiliation(s)
- Nikolaus Berndt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine Charité, Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Jörg Rösner
- Neuroscience Research Center, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Rizwan Ul Haq
- Neuroscience Research Center, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Richard Kovács
- Institute for Neurophysiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | - Claudia Spies
- Department of Anesthesiology and Intensive Care, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Agustin Liotta
- Neuroscience Research Center, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany. .,Department of Anesthesiology and Intensive Care, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany. .,Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Albrecht A, Müller I, Ardi Z, Çalışkan G, Gruber D, Ivens S, Segal M, Behr J, Heinemann U, Stork O, Richter-Levin G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. Neurosci Biobehav Rev 2017; 74:21-43. [PMID: 28088535 DOI: 10.1016/j.neubiorev.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
Abstract
ALBRECHT, A., MÜLLER, I., ARDI, Z., ÇALIŞKAN, G., GRUBER, D., IVENS, S., SEGAL, M., BEHR, J., HEINEMANN, U., STORK, O., and RICHTER-LEVIN, G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. NEUROSCI BIOBEHAV REV XXX-XXX, 2016.- Childhood adversity is among the most potent risk factors for developing mood and anxiety disorders later in life. Therefore, understanding how stress during childhood shapes and rewires the brain may optimize preventive and therapeutic strategies for these disorders. To this end, animal models of stress exposure in rodents during their post-weaning and pre-pubertal life phase have been developed. Such 'juvenile stress' has a long-lasting impact on mood and anxiety-like behavior and on stress coping in adulthood, accompanied by alterations of the GABAergic system within core regions for the stress processing such as the amygdala, prefrontal cortex and hippocampus. While many regionally diverse molecular and electrophysiological changes are observed, not all of them correlate with juvenile stress-induced behavioral disturbances. It rather seems that certain juvenile stress-induced alterations reflect the system's attempts to maintain homeostasis and thus promote stress resilience. Analysis tools such as individual behavioral profiling may allow the association of behavioral and neurobiological alterations more clearly and the dissection of alterations related to the pathology from those related to resilience.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Iris Müller
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| | - Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - David Gruber
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Sebastian Ivens
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Herzl St 234, 7610001 Rehovot, Israel
| | - Joachim Behr
- Research Department of Experimental and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Garystraße 5, 14195 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Brandenburg Medical School - Campus Neuruppin, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
| | - Uwe Heinemann
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Psychology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| |
Collapse
|