1
|
Sadlonova M, Meyer T, Binder L, Wachter R, Edelmann F, Herrmann-Lingen C. Higher galectin-3 levels are independently associated with lower anxiety in patients with risk factors for heart failure. Biopsychosoc Med 2020; 14:24. [PMID: 33024450 PMCID: PMC7531142 DOI: 10.1186/s13030-020-00195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/09/2020] [Indexed: 12/04/2022] Open
Abstract
Background Galectin-3 promotes the proliferation of neural progenitor cells and is engaged in cell-cell adhesion, cell-matrix interactions, and macrophage activation. In addition, in patients with heart failure this carbohydrate-binding protein is a known prognostic marker for cardiovascular mortality. However, its association with psychological variables has not been investigated so far. Methods Using data from the multicenter, observational Diast-CHF (Diagnostic Trial on Prevalence and Clinical Course of Diastolic Dysfunction and Heart Failure) trial, we studied in participants with cardiovascular risk factors (n = 1260, age 66.7 ± 8.0 years, males 51%, left ventricular ejection fraction 60.0 ± 8.1%) the relationship between serum concentrations of galectin-3 and anxiety. Galectin-3 levels were measured by means of a sandwich enzyme-linked immunosorbent assay, and anxiety was assessed using the Hospital Anxiety and Depression Scale (HADS). Results In univariate analysis, there was a weak but significant inverse correlation between galectin-3 and HADS anxiety (rho = − 0.076; p = 0.008). Linear regression models adjusted for sex, age, body-mass index, estimated glomerular filtration rate, left ventricular ejection fraction, 6-min walking distance, the 36-item Short-Form Health Survey (SF-36) subscale physical functioning, and known biomarkers for heart failure confirmed that serum galectin-3 significantly and independently predicted self-rated anxiety (B = -2.413; 95%CI = -2.413–-4.422; p = 0.019). Conclusion In patients with cardiovascular risk factors, serum concentrations of galectin-3 showed an inverse association with anxiety, which was independent of both the severity of physical impairment and established risk factors for the progression of heart failure.
Collapse
Affiliation(s)
- Monika Sadlonova
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Center, Göttingen, Germany.,Department of Thoracic and Cardiovascular Surgery, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lutz Binder
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.,Institute for Clinical Chemistry, University of Göttingen Medical Center, Göttingen, Germany
| | - Rolf Wachter
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,Department of Cardiology, University of Leipzig Medical Center, Leipzig, Germany
| | - Frank Edelmann
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Oliveira-de-Abreu E, Silva-dos-Santos D, Lepletier A, Ramos TDP, Ferreira-Reis R, Vasconcelos-Fontes L, Ramos MT, Torres RC, Cotta-de-Almeida V, Carvalho VDF, Villa-Verde DMS. Lack of Galectin-3 Disrupts Thymus Homeostasis in Association to Increase of Local and Systemic Glucocorticoid Levels and Steroidogenic Machinery. Front Endocrinol (Lausanne) 2018; 9:365. [PMID: 30042731 PMCID: PMC6048246 DOI: 10.3389/fendo.2018.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Maintenance of thymus homeostasis is a delicate interplay involving hormones, neurotransmitters and local microenvironmental proteins, as well as saccharides, acting on both thymocytes and stromal cells. Disturbances in these interactions may lead to alterations on thymocyte development. We previously showed that galectin-3, a β-galactoside-binding protein, is constitutively expressed in the thymus, interacting with extracellular matrix glycoproteins and acting as a de-adhesion molecule, thus modulating thymocyte-stromal cell interactions. In this work, we aimed to investigate the participation of galectin-3 in the maintenance of thymus homeostasis, including hormonal-mediated circuits. For that, we used genetically engineered galectin-3-deficient mice. We observed that the thymus of galectin-3-deficient mice was reduced in mass and cellularity compared to wild-type controls; however, the proportions of different thymocyte subpopulations defined by CD4/CD8 expression were not changed. Considering the CD4-CD8- double-negative (DN) subpopulation, an accumulation of the most immature (DN1) stage was observed. Additionally, the proliferative capacity of thymocytes was decreased in all thymocyte subsets, whereas the percentage of apoptosis was increased, especially in the CD4+CD8+ double-positive thymocytes. As glucocorticoid hormones are known to be involved in thymus homeostasis, we evaluated serum and intrathymic corticosterone levels by radioimmunoassay, and the expression of steroidogenic machinery using real-time PCR. We detected a significant increase in corticosterone levels in both serum and thymus samples of galectin-3-deficient mice, as compared to age-matched controls. This was paralleled by an increase of gene transcription of the steroidogenic enzymes, steroidogenic acute regulatory protein (Star) and Cyp11b1 in thymus, 11β-Hydroxysteroid Dehydrogenase (Hsd11b1) in the adrenal, and Cyp11a1 in both glands. In conclusion, our findings show that the absence of galectin-3 subverts mouse thymus homeostasis by a mechanism likely associated to intrathymic and systemic stress-related endocrine circuitries, affecting thymocyte number, proliferation and apoptosis.
Collapse
Affiliation(s)
- Ednéa Oliveira-de-Abreu
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Danielle Silva-dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ailin Lepletier
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Tiago D. P. Ramos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rafaella Ferreira-Reis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Mariana T. Ramos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rafael C. Torres
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinícius de Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Déa M. S. Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- *Correspondence: Déa M. S. Villa-Verde ;
| |
Collapse
|
3
|
Timoshenko AV. Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions. Cell Mol Life Sci 2015; 72:4327-40. [PMID: 26245305 PMCID: PMC11113283 DOI: 10.1007/s00018-015-2008-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/12/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Galectins, a family of soluble β-galactoside-binding proteins, serve as mediators of fundamental biological processes, such as cell growth, differentiation, adhesion, migration, survival, and death. The purpose of this review is to summarize the current knowledge regarding the ways in which the expression of individual galectins differs in normal and transformed human cells exposed to various stimuli mimicking physiological and pathological microenvironmental stress conditions. A conceptual point is being made and grounded that the modulation of galectin expression profiles is a key aspect of cellular stress responses. Moreover, this modulation might be precisely regulated at transcriptional and post-transcriptional levels in the context of non-overlapping transcription factors and miRNAs specific to galectins.
Collapse
Affiliation(s)
- Alexander V Timoshenko
- Department of Biology, Western University, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
4
|
Dabelic S, Supraha S, Dumic J. Galectin-3 in macrophage-like cells exposed to immunomodulatory drugs. Biochim Biophys Acta Gen Subj 2006; 1760:701-9. [PMID: 16458432 DOI: 10.1016/j.bbagen.2005.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 11/24/2005] [Accepted: 11/26/2005] [Indexed: 11/29/2022]
Abstract
During the last few decades, the effects of immunomodulatory drugs on numerous molecules and biological processes have been widely studied. Nevertheless, the relationship between immunomodulatory drugs and lectin expression/function is still to be elucidated. In this study, we used THP-1-derived macrophages to investigate the effects of non-steroidal anti-inflammatory drugs (aspirin and indomethacin) and glucocorticoids (hydrocortisone and dexamethasone) on galectin-3, a multifunctional beta-galactoside binding lectin, which in general acts as a strong pro-inflammatory signal. The results showed that all immunomodulatory drugs applied in clinically relevant doses affect both the gene (LGALS3) and protein expression level of galectin-3. The provoked changes on protein level are qualitatively and quantitatively different comparing to the effects on galectin-3 mRNA level, and depend on the differentiation state of the cell, drug type and applied concentration as well as on time of the exposure. Our data revealed galectin-3 as a new target molecule of immunomodulatory drugs, thus suggesting an additional pathway of their action on immune response.
Collapse
Affiliation(s)
- Sanja Dabelic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.
| | | | | |
Collapse
|
5
|
Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta Gen Subj 2006; 1760:616-35. [PMID: 16478649 DOI: 10.1016/j.bbagen.2005.12.020] [Citation(s) in RCA: 816] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 02/07/2023]
Abstract
Galectins, an ancient lectin family, are characterized by specific binding of beta-galactosides through evolutionary conserved sequence elements of carbohydrate-recognition domain (CRD). A structurally unique member of the family is galectin-3; in addition to the CRD it contains a proline- and glycine-rich N-terminal domain (ND) through which is able to form oligomers. Galectin-3 is widely spread among different types of cells and tissues, found intracellularly in nucleus and cytoplasm or secreted via non-classical pathway outside of cell, thus being found on the cell surface or in the extracellular space. Through specific interactions with a variety of intra- and extracellular proteins galectin-3 affects numerous biological processes and seems to be involved in different physiological and pathophysiological conditions, such as development, immune reactions, and neoplastic transformation and metastasis. The review attempts to summarize the existing information on structural, biochemical and intriguing functional properties of galectin-3.
Collapse
Affiliation(s)
- Jerka Dumic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.
| | | | | |
Collapse
|
6
|
Rabinovich GA, Rubinstein N, Fainboim L. Unlocking the secrets of galectins: a challenge at the frontier of glyco‐immunology. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gabriel A. Rabinovich
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín” and Department of Microbiology, Parasitology and Immunology, School of Medicine, University of Buenos Aires, Argentina
| | - Natalia Rubinstein
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín” and Department of Microbiology, Parasitology and Immunology, School of Medicine, University of Buenos Aires, Argentina
| | - Leonardo Fainboim
- Division of Immunogenetics, Hospital de Clínicas “José de San Martín” and Department of Microbiology, Parasitology and Immunology, School of Medicine, University of Buenos Aires, Argentina
| |
Collapse
|