1
|
Tripathi H, Mukhopadhyay S, Mohapatra SK. Sepsis-associated pathways segregate cancer groups. BMC Cancer 2020; 20:309. [PMID: 32293345 PMCID: PMC7160985 DOI: 10.1186/s12885-020-06774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sepsis and cancer are both leading causes of death, and occurrence of any one, increases the likelihood of the other. While cancer patients are susceptible to sepsis, survivors of sepsis are also susceptible to develop certain cancers. This mutual dependence for susceptibility suggests shared biology between the two disease categories. Earlier analysis had revealed a cancer-related pathway to be up-regulated in Septic Shock (SS), an advanced stage of sepsis. This has motivated a more comprehensive comparison of the transcriptomes of SS and cancer. METHODS Gene Set Enrichment Analysis was performed to detect the pathways enriched in SS and cancer. Thereafter, hierarchical clustering was applied to identify relative segregation of 17 cancer types into two groups vis-a-vis SS. Biological significance of the selected pathways was explored by network analysis. Clinical significance of the pathways was tested by survival analysis. A robust classifier of cancer groups was developed based on machine learning. RESULTS A total of 66 pathways were observed to be enriched in both SS and cancer. However, clustering segregated cancer types into two categories based on the direction of transcriptomic change. In general, there was up-regulation in SS and one group of cancer (termed Sepsis-Like Cancer, or SLC), but not in other cancers (termed Cancer Alone, or CA). The SLC group mainly consisted of malignancies of the gastrointestinal tract (head and neck, oesophagus, stomach, liver and biliary system) often associated with infection. Machine learning classifier successfully segregated the two cancer groups with high accuracy (> 98%). Additionally, pathway up-regulation was observed to be associated with survival in the SLC group of cancers. CONCLUSION Transcriptome-based systems biology approach segregates cancer into two groups (SLC and CA) based on similarity with SS. Host response to infection plays a key role in pathogenesis of SS and SLC. However, we hypothesize that some component of the host response is protective in both SS and SLC.
Collapse
Affiliation(s)
- Himanshu Tripathi
- National Institute of Biomedical Genomics, P.O. NSS, Kalyani, Nadia, West Bengal, 741251, India
| | - Samanwoy Mukhopadhyay
- National Institute of Biomedical Genomics, P.O. NSS, Kalyani, Nadia, West Bengal, 741251, India
| | - Saroj Kant Mohapatra
- National Institute of Biomedical Genomics, P.O. NSS, Kalyani, Nadia, West Bengal, 741251, India.
| |
Collapse
|
2
|
Wright CR, Brown EL, Della Gatta PA, Fatouros IG, Karagounis LG, Terzis G, Mastorakos G, Michailidis Y, Mandalidis D, Spengos K, Chatzinikolaou A, Methenitis S, Draganidis D, Jamurtas AZ, Russell AP. Regulation of Granulocyte Colony-Stimulating Factor and Its Receptor in Skeletal Muscle is Dependent Upon the Type of Inflammatory Stimulus. J Interferon Cytokine Res 2015; 35:710-9. [PMID: 26057332 DOI: 10.1089/jir.2014.0159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cytokine granulocyte colony-stimulating factor (G-CSF) binds to its receptor (G-CSFR) to stimulate hematopoietic stem cell mobilization, myelopoiesis, and the production and activation of neutrophils. In response to exercise-induced muscle damage, G-CSF is increased in circulation and G-CSFR has recently been identified in skeletal muscle cells. While G-CSF/G-CSFR activation mediates pro- and anti-inflammatory responses, our understanding of the role and regulation in the muscle is limited. The aim of this study was to investigate, in vitro and in vivo, the role and regulation of G-CSF and G-CSFR in skeletal muscle under conditions of muscle inflammation and damage. First, C2C12 myotubes were treated with lipopolysaccharide (LPS) with and without G-CSF to determine if G-CSF modulates the inflammatory response. Second, the regulation of G-CSF and its receptor was measured following eccentric exercise-induced muscle damage and the expression levels we investigated for redox sensitivity by administering the antioxidant N-acetylcysteine (NAC). LPS stimulation of C2C12 myotubes resulted in increases in G-CSF, interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNFα) messenger RNA (mRNA) and an increase in G-CSF, IL-6, and MCP-1 release from C2C12 myotubes. The addition of G-CSF following LPS stimulation of C2C12 myotubes increased IL-6 mRNA and cytokine release into the media, however it did not affect MCP-1 or TNFα. Following eccentric exercise-induced muscle damage in humans, G-CSF levels were either marginally increased in circulation or remain unaltered in skeletal muscle. Similarly, G-CSFR levels remained unchanged in response to damaging exercise and G-CSF/G-CSFR did not change in response to NAC. Collectively, these findings suggest that G-CSF may cooperate with IL-6 and potentially promote muscle regeneration in vitro, whereas in vivo aseptic inflammation induced by exercise did not change G-CSF and G-CSFR responses. These observations suggest that different models of inflammation produce a different G-CSF response.
Collapse
Affiliation(s)
- Craig Robert Wright
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| | - Erin Louise Brown
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| | - Paul A Della Gatta
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| | - Ioannis G Fatouros
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
- 3 The Institute of Human Performance and Rehabilitation, Center for Research and Technology-Thessaly , Trikala, Greece
| | - Leonidas G Karagounis
- 4 Nestlé Research Center , Nestec Ltd., Lausanne, Switzerland
- 5 School of Physical Education and Sport Sciences, University of Thessaly , Karies, Trikala, Greece
| | - Gerasimos Terzis
- 6 Athletics Laboratory, School of Physical Education and Sports Science, University of Athens , Athens, Greece
| | - Georgios Mastorakos
- 7 Endocrine Unit, Second Department of Obstetrics and Gynecology, Athens University Medical School , Athens, Greece
| | - Yannis Michailidis
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
| | - Dimitris Mandalidis
- 6 Athletics Laboratory, School of Physical Education and Sports Science, University of Athens , Athens, Greece
| | - Kontantinos Spengos
- 8 The 1st Department of Neurology, University of Athens , School of Medicine, Eginition Hospital, Athens, Greece
| | - Athanasios Chatzinikolaou
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
| | - Spiros Methenitis
- 6 Athletics Laboratory, School of Physical Education and Sports Science, University of Athens , Athens, Greece
| | - Dimitrios Draganidis
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
| | - Athanasios Z Jamurtas
- 3 The Institute of Human Performance and Rehabilitation, Center for Research and Technology-Thessaly , Trikala, Greece
- 5 School of Physical Education and Sport Sciences, University of Thessaly , Karies, Trikala, Greece
| | - Aaron Paul Russell
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| |
Collapse
|
3
|
Hasselgren PO. β-Hydroxy-β-methylbutyrate (HMB) and prevention of muscle wasting. Metabolism 2014; 63:5-8. [PMID: 24140096 DOI: 10.1016/j.metabol.2013.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue ST 919, Boston, MA 02115.
| |
Collapse
|
4
|
Castillero E, Alamdari N, Lecker SH, Hasselgren PO. Suppression of atrogin-1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes. Metabolism 2013; 62:1495-502. [PMID: 23866982 DOI: 10.1016/j.metabol.2013.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The mechanistic role of the ubiquitin ligases atrogin-1 and MuRF1 in glucocorticoid-induced muscle wasting is not fully understood. Here, we tested the hypothesis that glucocorticoid-induced muscle atrophy is at least in part linked to atrogin-1 and MuRF1 expression and that the ubiquitin ligases are regulated by compensatory mechanisms. METHODS The expression of atrogin-1 and MuRF1 was suppressed individually or in combination in cultured L6 myotubes by using siRNA technique. Myotubes were treated with dexamethasone followed by determination of mRNA and protein levels for atrogin-1 and MuRF1, protein synthesis and degradation rates, and myotube morphology. RESULTS Suppression of atrogin-1 resulted in increased expression of MuRF1 and vice versa, suggesting that the ubiquitin ligases are regulated by compensatory mechanisms. Simultaneous suppression of atrogin-1 and MuRF1 resulted in myotube hypertrophy, mainly reflecting stimulated protein synthesis, and prevented dexamethasone-induced myotube atrophy, mainly reflecting inhibited protein degradation. CONCLUSIONS The results provide evidence for a link between upregulated atrogin-1 and MuRF1 expression and glucocorticoid-induced muscle atrophy. The study also suggests that atrogin-1 and MuRF1 levels are regulated by compensatory mechanisms and that inhibition of both ubiquitin ligases may be needed to prevent glucocorticoid-induced muscle proteolysis and atrophy.
Collapse
Affiliation(s)
- Estibaliz Castillero
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
5
|
Merli M, Giusto M, Molfino A, Bonetto A, Rossi M, Ginanni Corradini S, Baccino FM, Rossi Fanelli F, Costelli P, Muscaritoli M. MuRF-1 and p-GSK3β expression in muscle atrophy of cirrhosis. Liver Int 2013; 33:714-21. [PMID: 23432902 DOI: 10.1111/liv.12128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/19/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic diseases, including cirrhosis, are often accompanied by protein-energy malnutrition and muscle loss, which in turn negatively affect quality of life, morbidity and mortality. Unlike other chronic conditions, few data are available on the molecular mechanisms underlying muscle wasting in this clinical setting. AIMS To assess mechanisms of muscle atrophy in patients with cirrhosis. METHODS Nutritional [subjective global assessment (SGA) and anthropometry] and metabolic assessment was performed in 30 cirrhotic patients awaiting liver transplantation. Rectus abdominis biopsies were obtained intraoperatively in 22 cirrhotic patients and in 10 well-nourished subjects undergoing elective surgery for non-neoplastic disease, as a control group. Total RNA was extracted and mRNA for atrogenes (MuRF-1, Atrogin-1/MAFbx), myostatin (MSTN), GSK3β and IGF-1 was assayed. RESULTS A total of 50% of cirrhotic patients were malnourished based on SGA, while 53% were muscle-depleted according to mid-arm muscle area (MAMA<5th percentile). MuRF-1 RNA expression was significantly increased in malnourished cirrhotic patients (SGA-B/C) vs. well-nourished patients (SGA-A) (P = 0.01). The phosphorylation of GSK3β was up-regulated in cirrhotic patients with hepatocellular carcinoma (HCC) vs. patients without tumour (P < 0.05). CONCLUSIONS Muscle loss is frequently found in end-stage liver disease patients. Molecular factors pertaining to signalling pathways known to be involved in the regulation of muscle mass are altered during cirrhosis and HCC.
Collapse
Affiliation(s)
- Manuela Merli
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Aversa Z, Alamdari N, Castillero E, Muscaritoli M, Fanelli FR, Hasselgren PO. CaMKII activity is reduced in skeletal muscle during sepsis. J Cell Biochem 2013; 114:1294-305. [DOI: 10.1002/jcb.24469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/27/2012] [Indexed: 12/23/2022]
|
7
|
Castillero E, Alamdari N, Aversa Z, Gurav A, Hasselgren PO. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting. PLoS One 2013; 8:e59726. [PMID: 23555761 PMCID: PMC3605288 DOI: 10.1371/journal.pone.0059726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/17/2013] [Indexed: 01/01/2023] Open
Abstract
FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.
Collapse
Affiliation(s)
- Estibaliz Castillero
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nima Alamdari
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zaira Aversa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aniket Gurav
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Schakman O, Dehoux M, Bouchuari S, Delaere S, Lause P, Decroly N, Shoelson SE, Thissen JP. Role of IGF-I and the TNFα/NF-κB pathway in the induction of muscle atrogenes by acute inflammation. Am J Physiol Endocrinol Metab 2012; 303:E729-39. [PMID: 22739109 PMCID: PMC4118721 DOI: 10.1152/ajpendo.00060.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several catabolic states (sepsis, cancer, etc.) associated with acute inflammation are characterized by a loss of skeletal muscle due to accelerated proteolysis. The main proteolytic systems involved are the autophagy and the ubiquitin-proteasome (UPS) pathways. Among the signaling pathways that could mediate proteolysis induced by acute inflammation, the transcription factor NF-κB, induced by TNFα, and the transcription factor forkhead box O (FOXO), induced by glucocorticoids (GC) and inhibited by IGF-I, are likely to play a key role. The aim of this study was to identify the nature of the molecular mediators responsible for the induction of these muscle proteolytic systems in response to acute inflammation caused by LPS injection. LPS injection robustly stimulated the expression of several components of the autophagy and the UPS pathways in the skeletal muscle. This induction was associated with a rapid increase of circulating levels of TNFα together with a muscular activation of NF-κB followed by a decrease in circulating and muscle levels of IGF-I. Neither restoration of circulating IGF-I nor restoration of muscle IGF-I levels prevented the activation of autophagy and UPS genes by LPS. The inhibition of TNFα production and muscle NF-κB activation, respectively by using pentoxifilline and a repressor of NF-κB, did not prevent the activation of autophagy and UPS genes by LPS. Finally, inhibition of GC action with RU-486 blunted completely the activation of these atrogenes by LPS. In conclusion, we show that increased GC production plays a more crucial role than decreased IGF-I and increased TNFα/NF-κB pathway for the induction of the proteolytic systems caused by acute inflammation.
Collapse
Affiliation(s)
- O. Schakman
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
- 2Laboratory of Cell Physiology, Institute of Neurosciences,
Université Catholique de Louvain, Brussels, Belgium;
| | - M. Dehoux
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - S. Bouchuari
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - S. Delaere
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - P. Lause
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - N. Decroly
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| | - S. E. Shoelson
- 3Joslin Diabetes Center and Department of Medicine, Harvard
Medical School, Boston, Massachusetts
| | - J.-P. Thissen
- 1Pole of Endocrinology, Diabetes and Nutrition, Institut de
Recherche Expérimentale et Clinique, Université Catholique de Louvain,
Brussels, Belgium;
| |
Collapse
|
9
|
Aare S, Radell P, Eriksson LI, Chen YW, Hoffman EP, Larsson L. Role of sepsis in the development of limb muscle weakness in a porcine intensive care unit model. Physiol Genomics 2012; 44:865-77. [DOI: 10.1152/physiolgenomics.00031.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Severe muscle wasting and loss of muscle function in critically ill mechanically ventilated intensive care unit (ICU) patients have significant negative consequences on their recovery and rehabilitation that persist long after their hospital discharge; moreover, the underlying mechanisms are unclear. Mechanical ventilation (MV) and immobilization-induced modifications play an important role in these consequences, including endotoxin-induced sepsis. The present study aims to investigate how sepsis aggravates ventilator and immobilization-related limb muscle dysfunction. Hence, biceps femoris muscle gene expression was investigated in pigs exposed to ICU intervention, i.e., immobilization, sedation, and MV, alone or in combination with sepsis, for 5 days. In previous studies, we have shown that ICU intervention alone or in combination with sepsis did not affect muscle fiber size on day 5, but a significant decrease was observed in single fiber maximal force normalized to cross-sectional area (specific force) when sepsis was added to the ICU intervention. According to microarray data, the addition of sepsis to the ICU intervention induced a deregulation of >500 genes, such as an increased expression of genes involved in chemokine activity, kinase activity, and transcriptional regulation. Genes involved in the regulation of the oxidative stress response and cytoskeletal/sarcomeric and heat shock proteins were on the other hand downregulated when sepsis was added to the ICU intervention. Thus, sepsis has a significant negative effect on muscle function in critically ill ICU patients, and chemokine activity and heat shock protein genes are forwarded to play an instrumental role in this specific muscle wasting condition.
Collapse
Affiliation(s)
- Sudhakar Aare
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Peter Radell
- Department of Anesthesiology, Karolinska Institute, Stockholm, Sweden
| | - Lars I. Eriksson
- Department of Anesthesiology, Karolinska Institute, Stockholm, Sweden
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- Department of Pediatrics, The George Washington University Medical Center, Washington, District of Columbia; and
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, District of Columbia
- Department of Pediatrics, The George Washington University Medical Center, Washington, District of Columbia; and
| | - Lars Larsson
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
10
|
β-Hydroxy-β-methylbutyrate (HMB) prevents dexamethasone-induced myotube atrophy. Biochem Biophys Res Commun 2012; 423:739-43. [PMID: 22705301 DOI: 10.1016/j.bbrc.2012.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/23/2022]
Abstract
High levels of glucocorticoids result in muscle wasting and weakness. β-hydroxy-β-methylbutyrate (HMB) attenuates the loss of muscle mass in various catabolic conditions but the influence of HMB on glucocorticoid-induced muscle atrophy is not known. We tested the hypothesis that HMB prevents dexamethasone-induced atrophy in cultured myotubes. Treatment of cultured L6 myotubes with dexamethasone resulted in increased protein degradation and expression of atrogin-1 and MuRF1, decreased protein synthesis and reduced myotube size. All of these effects of dexamethasone were attenuated by HMB. Additional experiments provided evidence that the inhibitory effects of HMB on dexamethasone-induced increase in protein degradation and decrease in protein synthesis were regulated by p38/MAPK- and PI3K/Akt-dependent cell signaling, respectively. The present results suggest that glucocorticoid-induced muscle wasting can be prevented by HMB.
Collapse
|