1
|
Zhang R, Chen B, Zhang H, Tu L, Luan T. Stable isotope-based metabolic flux analysis: A robust tool for revealing toxicity pathways of emerging contaminants. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2
|
Huang H, Jin Y, Chen C, Feng M, Wang Q, Li D, Chen W, Xing X, Yu D, Xiao Y. A toxicity pathway-based approach for modeling the mode of action framework of lead-induced neurotoxicity. ENVIRONMENTAL RESEARCH 2021; 199:111328. [PMID: 34004169 DOI: 10.1016/j.envres.2021.111328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The underlying mechanisms of lead (Pb) toxicity are not fully understood, which makes challenges to the traditional risk assessment. There is growing use of the mode of action (MOA) for risk assessment by integration of experimental data and system biology. The current study aims to develop a new pathway-based MOA for assessing Pb-induced neurotoxicity. METHODS The available Comparative Toxicogenomic Database (CTD) was used to search genes associated with Pb-induced neurotoxicity followed by developing toxicity pathways using Ingenuity Pathway Analysis (IPA). The spatiotemporal sequence of disturbing toxicity pathways and key events (KEs) were identified by upstream regulator analysis. The MOA framework was constructed by KEs in biological and chronological order. RESULTS There were a total of 71 references showing the relationship between lead exposure and neurotoxicity, which contained 2331 genes. IPA analysis showed that the neuroinflammation signaling pathway was the core toxicity pathway in the enriched pathways relevant to Pb-induced neurotoxicity. The upstream regulator analysis demonstrated that the aryl hydrocarbon receptor (AHR) signaling pathway was the upstream regulator of the neuroinflammation signaling pathway (11.76% overlap with upstream regulators, |Z-score|=1.451). Therefore, AHR activation was recognized as the first key event (KE1) in the MOA framework. The following downstream molecular and cellular key events were also identified. The pathway-based MOA framework of Pb-induced neurotoxicity was built starting with AHR activation, followed by an inflammatory response and neuron apoptosis. CONCLUSION Our toxicity pathway-based approach not only advances the development of risk assessment for Pb-induced neurotoxicity but also brings new insights into constructing MOA frameworks of risk assessment for new chemicals.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Chuanying Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiyao Feng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
4
|
Baillif B, Wichard J, Méndez-Lucio O, Rouquié D. Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets. Front Chem 2020; 8:296. [PMID: 32391323 PMCID: PMC7191531 DOI: 10.3389/fchem.2020.00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Pharmaceutical or phytopharmaceutical molecules rely on the interaction with one or more specific molecular targets to induce their anticipated biological responses. Nonetheless, these compounds are also prone to interact with many other non-intended biological targets, also known as off-targets. Unfortunately, off-target identification is difficult and expensive. Consequently, QSAR models predicting the activity on a target have gained importance in drug discovery or in the de-risking of chemicals. However, a restricted number of targets are well characterized and hold enough data to build such in silico models. A good alternative to individual target evaluations is to use integrative evaluations such as transcriptomics obtained from compound-induced gene expression measurements derived from cell cultures. The advantage of these particular experiments is to capture the consequences of the interaction of compounds on many possible molecular targets and biological pathways, without having any constraints concerning the chemical space. In this work, we assessed the value of a large public dataset of compound-induced transcriptomic data, to predict compound activity on a selection of 69 molecular targets. We compared such descriptors with other QSAR descriptors, namely the Morgan fingerprints (similar to extended-connectivity fingerprints). Depending on the target, active compounds could show similar signatures in one or multiple cell lines, whether these active compounds shared similar or different chemical structures. Random forest models using gene expression signatures were able to perform similarly or better than counterpart models built with Morgan fingerprints for 25% of the target prediction tasks. These performances occurred mostly using signatures produced in cell lines showing similar signatures for active compounds toward the considered target. We show that compound-induced transcriptomic data could represent a great opportunity for target prediction, allowing to overcome the chemical space limitation of QSAR models.
Collapse
Affiliation(s)
| | - Joerg Wichard
- Department of Genetic Toxicology, Bayer AG, Berlin, Germany
| | - Oscar Méndez-Lucio
- Bayer SAS, Bayer CropScience, Sophia Antipolis, France.,Bloomoon, Villeurbanne, France
| | - David Rouquié
- Bayer SAS, Bayer CropScience, Sophia Antipolis, France
| |
Collapse
|
5
|
Grenet I, Comet JP, Schorsch F, Ryan N, Wichard J, Rouquié D. Chemical in vitro bioactivity profiles are not informative about the long-term in vivo endocrine mediated toxicity. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Critical assessment and integration of separate lines of evidence for risk assessment of chemical mixtures. Arch Toxicol 2019; 93:2741-2757. [PMID: 31520250 DOI: 10.1007/s00204-019-02547-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Humans are exposed to multiple chemicals on a daily basis instead of to just a single chemical, yet the majority of existing toxicity data comes from single-chemical exposure. Multiple factors must be considered such as the route, concentration, duration, and the timing of exposure when determining toxicity to the organism. The need for adequate model systems (in vivo, in vitro, in silico and mathematical) is paramount for better understanding of chemical mixture toxicity. Currently, shortcomings plague each model system as investigators struggle to find the appropriate balance of rigor, reproducibility and appropriateness in mixture toxicity studies. Significant questions exist when comparing single-to mixture-chemical toxicity concerning additivity, synergism, potentiation, or antagonism. Dose/concentration relevance is a major consideration and should be subthreshold for better accuracy in toxicity assessment. Previous work was limited by the technology and methodology of the time, but recent advances have resulted in significant progress in the study of mixture toxicology. Novel technologies have added insight to data obtained from in vivo studies for predictive toxicity testing. These include new in vitro models: omics-related tools, organs-on-a-chip and 3D cell culture, and in silico methods. Taken together, all these modern methodologies improve the understanding of the multiple toxicity pathways associated with adverse outcomes (e.g., adverse outcome pathways), thus allowing investigators to better predict risks linked to exposure to chemical mixtures. As technology and knowledge advance, our ability to harness and integrate separate streams of evidence regarding outcomes associated with chemical mixture exposure improves. As many national and international organizations are currently stressing, studies on chemical mixture toxicity are of primary importance.
Collapse
|
7
|
Transcriptomic Profiles in Zebrafish Liver Permit the Discrimination of Surface Water with Pollution Gradient and Different Discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081648. [PMID: 30081495 PMCID: PMC6122030 DOI: 10.3390/ijerph15081648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023]
Abstract
The present study aims to evaluate the potential of transcriptomic profiles in evaluating the impacts of complex mixtures of pollutants at environmentally relevant concentrations on aquatic vertebrates. The changes in gene expression were determined using microarray in the liver of male zebrafish (Danio rerio) exposed to surface water collected from selected locations on the Hun River, China. The numbers of differentially expressed genes (DEGs) in each treatment ranged from 728 to 3292, which were positively correlated with chemical oxygen demand (COD). Predominant transcriptomic responses included peroxisome proliferator-activated receptors (PPAR) signaling and steroid biosynthesis. Key pathways in immune system were also affected. Notably, two human diseases related pathways, insulin resistance and Salmonella infection were enriched. Clustering analysis and principle component analysis with DEGs differentiated the upstream and downstream site of Shenyang City, and the mainstream and the tributary sites near the junction. Comparison the gene expression profiles of zebrafish exposed to river surface water with those to individual chemicals found higher similarity of the river water with estradiol than several other organic pollutants and metals. Results suggested that the transcriptomic profiles of zebrafish is promising in differentiating surface water with pollution gradient and different discharges and in providing valuable information to support discharge management.
Collapse
|
8
|
Krivoshiev BV, Beemster GTS, Sprangers K, Cuypers B, Laukens K, Blust R, Husson SJ. Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). Toxicol Res (Camb) 2018; 7:492-502. [PMID: 30090599 PMCID: PMC6060682 DOI: 10.1039/c8tx00006a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022] Open
Abstract
The flame retardant, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), has been receiving great interest given its superior fire protection properties, and its predicted low level of persistence, bioaccumulation, and toxicity. However, empirical toxicological data that are essential for a complete hazard assessment are severely lacking. In this study, we attempted to identify the potential toxicological modes of action by transcriptome (RNA-seq) profiling of the human liver hepatocellular carcinoma cell line, HepG2. Such insight may help in identifying compounds of concern and potential toxicological phenotypes. DOPO was found to have little cytotoxic potential, with lower effective concentrations compared to other flame retardants studied in the same cell line. Differentially expressed genes revealed a wide range of molecular effects including changes in protein, energy, DNA, and lipid metabolism, along with changes in cellular stress response pathways. In response to 250 μM DOPO, the most perturbed biological processes were fatty acid metabolism, androgen metabolism, glucose transport, and renal function and development, which is in agreement with other studies that observed similar effects of other flame retardants in other species. However, treatment with 2.5 μM DOPO resulted in very few differentially expressed genes and failed to indicate any potential effects on biology, despite such concentrations likely being orders of magnitude greater than would be encountered in the environment. This, together with the low levels of cytotoxicity, supports the potential replacement of the current flame retardants by DOPO, although further studies are needed to establish the nephrotoxicity and endocrine disruption of DOPO.
Collapse
Affiliation(s)
- Boris V Krivoshiev
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Gerrit T S Beemster
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Katrien Sprangers
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Bart Cuypers
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
- Department of Biomedical Sciences , Unit of Molecular Parasitology , Institute of Tropical Medicine , Antwerp , Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
| | - Ronny Blust
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Steven J Husson
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| |
Collapse
|
9
|
Yang Q, Zhang L, Ben A, Wu N, Yi Y, Jiang L, Huang H, Yu Y. Effects of dispersible MoS 2 nanosheets and Nano-silver coexistence on the metabolome of yeast. CHEMOSPHERE 2018; 198:216-225. [PMID: 29421733 DOI: 10.1016/j.chemosphere.2018.01.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 05/24/2023]
Abstract
As a new rising star in the post-graphene two-dimensional materials (2DMs), molybdenum disulfide (MoS2) attracts increasing attentions and is widely applied. However, the chemical and toxicological interaction between MoS2 and other co-contaminants is still poorly understood. Nano-silver (N-Ag) is the most commonly used nanomaterial in commercial products and distributed widely in the environment. Herein, we investigated the effects of chitosan functionalized MoS2 (CS-MoS2) nanosheets, a water-dispersible form of MoS2, on the microbial toxicity of N-Ag. We found that the incorporation of CS-MoS2 nanosheets attenuated the oxidative stress induced by N-Ag on yeast cells, while caused more membrane stress. In addition, the inhibition of N-Ag on the metabolic activities of yeast cells could be attenuated by CS-MoS2 nanosheets as well. The coexistence of N-Ag and CS-MoS2 nanosheets mainly perturbed the amino acid-related metabolic pathways in yeast cells, and phosphoric acid was a potential nanotoxicity biomarker. We further found that CS-MoS2 nanosheets dramatically absorbed the Ag ion released from N-Ag, which might be responsible for its attenuation effect on the microbial toxicity of N-Ag. Our findings provide more new insights for the ecotoxicity evaluation of MoS2 and other 2DMs.
Collapse
Affiliation(s)
- Qi Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Lei Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Ailing Ben
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211800, China
| | - Na Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yanliang Yi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech, 211800, China.
| |
Collapse
|
10
|
Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro 2018; 46:178-188. [DOI: 10.1016/j.tiv.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/10/2017] [Accepted: 10/08/2017] [Indexed: 11/20/2022]
|
11
|
Van Emon JM, Pan P, van Breukelen F. Effects of chlorpyrifos and trichloropyridinol on HEK 293 human embryonic kidney cells. CHEMOSPHERE 2018; 191:537-547. [PMID: 29059561 PMCID: PMC7462251 DOI: 10.1016/j.chemosphere.2017.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Chlorpyrifos (CPF) [O, O-diethyl -O-3, 5, 6-trichloro-2-pyridyl phosphorothioate] is an organophosphate insecticide widely used for agricultural and urban pest control. Trichloropyridinol (TCP; 3,5,6-trichloro-2-pyridinol), the primary metabolite of CPF, is often used as a generic biomarker of exposure for CPF and related compounds. Human embryonic kidney 293 (HEK 293) cells were exposed to CPF and TCP with varying concentrations and exposure periods. Cell cultures enable the cost-effective study of specific biomarkers to help determine toxicity pathways to predict the effects of chemical exposures without relying on whole animals. Both CPF and TCP were found to induce cytotoxic effects with CPF being more toxic than TCP with EC50 values of 68.82 μg/mL and 146.87 μg·ml-1 respectively. Cell flow cytometric analyses revealed that exposure to either CPF or TCP leads to an initial burst of apoptotic induction followed by a slow recruitment of cells leading towards further apoptosis. CPF produced a strong induction of IL6, while TCP exposure resulted in a strong induction of IL1α. Importantly, the concentrations of CPF and TCP required for these cytokine inductions were higher than those required to induce apoptosis. These data suggest CPF and TCP are cytotoxic to HEK 293 cells but that the mechanism may not be related to an inflammatory response. CPF and TCP also varied in their effects on the HEK 293 proteome with 5 unique proteins detected after exposure to CPF and 31 unique proteins after TCP exposure.
Collapse
Affiliation(s)
- Jeanette M Van Emon
- U. S. Environmental Protection Agency, National Exposure Research Laboratory, 944 E. Harmon Ave, Las Vegas, NV 89119, USA.
| | - Peipei Pan
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
12
|
The use of omics-based approaches in regulatory toxicology: an alternative approach to assess the no observed transcriptional effect level. Microchem J 2018. [DOI: 10.1016/j.microc.2017.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
The challenge of the application of 'omics technologies in chemicals risk assessment: Background and outlook. Regul Toxicol Pharmacol 2017; 91 Suppl 1:S14-S26. [DOI: 10.1016/j.yrtph.2017.09.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022]
|
14
|
A toxicogenomics approach to screen chlorinated flame retardants tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate for potential health effects. J Appl Toxicol 2017; 38:459-470. [DOI: 10.1002/jat.3553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
|
15
|
Burgdorf T, Dunst S, Ertych N, Fetz V, Violet N, Vogl S, Schönfelder G, Schwarz F, Oelgeschläger M. The AOP Concept: How Novel Technologies Can Support Development of Adverse Outcome Pathways. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tanja Burgdorf
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sebastian Dunst
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Norman Ertych
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Verena Fetz
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Norman Violet
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Silvia Vogl
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Gilbert Schönfelder
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany
| | - Franziska Schwarz
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Michael Oelgeschläger
- Department Experimental Toxicology and ZEBET, German Centre for The Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
16
|
Porreca I, D’Angelo F, De Franceschi L, Mattè A, Ceccarelli M, Iolascon A, Zamò A, Russo F, Ravo M, Tarallo R, Scarfò M, Weisz A, De Felice M, Mallardo M, Ambrosino C. Pesticide toxicogenomics across scales: in vitro transcriptome predicts mechanisms and outcomes of exposure in vivo. Sci Rep 2016; 6:38131. [PMID: 27905518 PMCID: PMC5131489 DOI: 10.1038/srep38131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
In vitro Omics analysis (i.e. transcriptome) is suggested to predict in vivo toxicity and adverse effects in humans, although the causal link between high-throughput data and effects in vivo is not easily established. Indeed, the chemical-organism interaction can involve processes, such as adaptation, not established in cell cultures. Starting from this consideration we investigate the transcriptomic response of immortalized thyrocytes to ethylenthiourea and chlorpyrifos. In vitro data revealed specific and common genes/mechanisms of toxicity, controlling the proliferation/survival of the thyrocytes and unrelated hematopoietic cell lineages. These results were phenotypically confirmed in vivo by the reduction of circulating T4 hormone and the development of pancytopenia after long exposure. Our data imply that in vitro toxicogenomics is a powerful tool in predicting adverse effects in vivo, experimentally confirming the vision described as Tox21c (Toxicity Testing in the 21st century) although not fully recapitulating the biocomplexity of a living animal.
Collapse
Affiliation(s)
| | - Fulvio D’Angelo
- IRGS, Biogem, Via Camporeale, 83031, Ariano Irpino, Avellino, Italy
| | - Lucia De Franceschi
- Department of Medicine, University of Verona-AOUI Verona, Policlinico GB Rossi, P.Le L. Scuro, 10, 37134 Verona, Italy
| | - Alessandro Mattè
- Department of Medicine, University of Verona-AOUI Verona, Policlinico GB Rossi, P.Le L. Scuro, 10, 37134 Verona, Italy
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, Via Port’Arsa 11, 82100, Benevento, Italy
| | - Achille Iolascon
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II Napoli, Italy
| | - Alberto Zamò
- Department of Diagnostics and Public Health, University of Verona-AOUI Verona, Policlinico GB Rossi, P.Le L. Scuro, 10, 37134 Verona, Italy
| | - Filomena Russo
- IRGS, Biogem, Via Camporeale, 83031, Ariano Irpino, Avellino, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Schola Medica Salernitana’, University of Salerno, Baronissi, Salerno, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Schola Medica Salernitana’, University of Salerno, Baronissi, Salerno, Italy
| | - Marzia Scarfò
- IRGS, Biogem, Via Camporeale, 83031, Ariano Irpino, Avellino, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Schola Medica Salernitana’, University of Salerno, Baronissi, Salerno, Italy
| | | | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II Napoli, Italy
| | - Concetta Ambrosino
- IRGS, Biogem, Via Camporeale, 83031, Ariano Irpino, Avellino, Italy
- Department of Science and Technology, University of Sannio, Via Port’Arsa 11, 82100, Benevento, Italy
| |
Collapse
|
17
|
Krivoshiev BV, Dardenne F, Covaci A, Blust R, Husson SJ. Assessing in-vitro estrogenic effects of currently-used flame retardants. Toxicol In Vitro 2016; 33:153-62. [DOI: 10.1016/j.tiv.2016.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 01/16/2023]
|
18
|
Bae ON, Lee JY. Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology. Toxicol Res 2016; 32:1-3. [PMID: 26977252 PMCID: PMC4780238 DOI: 10.5487/tr.2016.32.1.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Sciences, Hanyang University, Ansan, Korea
| | - Joo Young Lee
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
19
|
Rychert M, Wilkins C. The challenge of a ban on animal testing for the development of a regulated legal market for new psychoactive substances (NPS) (‘legal highs’) in New Zealand: Issues and options for resolution. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2015; 26:1273-8. [DOI: 10.1016/j.drugpo.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
|
20
|
Knowledge sharing to facilitate regulatory decision-making in regard to alternatives to animal testing: Report of an EPAA workshop. Regul Toxicol Pharmacol 2015; 73:210-26. [DOI: 10.1016/j.yrtph.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/25/2023]
|
21
|
Hu X, Ouyang S, Mu L, An J, Zhou Q. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10825-10833. [PMID: 26295980 DOI: 10.1021/acs.est.5b02102] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Li Mu
- Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences , Shenyang 110016, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
22
|
Ouyang S, Hu X, Zhou Q. Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18104-18112. [PMID: 26221973 DOI: 10.1021/acsami.5b05328] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The interactions between nanomaterials and cells are fundamental in biological responses to nanomaterials. However, the size-dependent synergistic effects of envelopment and internalization as well as the metabolic mechanisms of nanomaterials have remained unknown. The nanomaterials tested here were larger graphene oxide nanosheets (GONS) and small graphene oxide quantum dots (GOQD). GONS intensively entrapped single-celled Chlorella vulgaris, and envelopment by GONS reduced the cell permeability. In contrast, GOQD-induced remarkable shrinkage of the plasma membrane and then enhanced cell permeability through strong internalization effects such as plasmolysis, uptake of nanomaterials, an oxidative stress increase, and inhibition of cell division and chlorophyll biosynthesis. Metabolomics analysis showed that amino acid metabolism was sensitive to nanomaterial exposure. Shrinkage of the plasma membrane is proposed to be linked to increases in the isoleucine levels. The inhibition of cell division and chlorophyll a biosynthesis was associated with decreases in aspartic acid and serine, the precursors of chlorophyll a. The increases in mitochondrial membrane potential loss and oxidative stress were correlated with an increase in linolenic acid. The above metabolites can be used as indicators of the corresponding biological responses. These results enhance our systemic understanding of the size-dependent biological effects of nanomaterials.
Collapse
Affiliation(s)
- Shaohu Ouyang
- †Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiangang Hu
- †Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qixing Zhou
- †Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|