1
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Suiker IM, E L Kleijburg F, A B Wösten H. Heat resistance acquirement of the spoilage yeast Saccharomyces diastaticus during heat exposure. J Food Prot 2023; 86:100020. [PMID: 36916600 DOI: 10.1016/j.jfp.2022.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
The main fungal cause of spoilage of carbonated fermented beverages in the brewing industry is the amylolytic budding yeast Saccharomyces cerevisiae subsp. diastaticus (Saccharomyces diastaticus). Heat treatment is used to avoid microbial spoilage of the fermented beverages. Therefore, the spoilage capacity of S. diastaticus may be linked to its relative high heat resistance. Here, we assessed whether S. diastaticus can acquire heat resistance when exposed to heat stress. To this end, ascospores of S. diastaticus strain MB523 were treated at 60°C for 10 min followed by growing the surviving spores on a glucose-containing medium. The resulting vegetative cells were then allowed to sporulate again in sporulation medium. This cycle of heat treatment, vegetative growth, and sporulation was performed eight times in three independent lineages. After these eight cycles, the sporulation rate was similar to the start (∼75%) but the resulting ascospores were more heat resistant. The time needed to kill 90% of the population at 60°C (i.e. the D60-value) increased from 6.5 to 9.0 min (p = 0.005). The vegetative cells also showed a trend to increased heat resistance with an increase in the D52-value from 9.2 to 16.2 min (p = 0.1). In contrast, heat resistance of the vegetative cells that had not been exposed to heat during the eight cycles had been reduced with a D52-value of 4.2 min (p = 0.003). Together, these data show that S. diastaticus MB523 can easily acquire heat resistance by inbreeding while subjected to heat stress. Conversely, heat resistance can be easily lost in the absence of this stress condition, indicative of a trade-off for heat resistance.
Collapse
Affiliation(s)
- Inge M Suiker
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; TiFN, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Fleur E L Kleijburg
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; TiFN, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands.
| |
Collapse
|
3
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
4
|
Wang X, Liao B, Li Z, Liu G, Diao L, Qian F, Yang J, Jiang Y, Zhao S, Li Y, Yang S. Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae. BIORESOUR BIOPROCESS 2021; 8:20. [PMID: 38650183 PMCID: PMC10992596 DOI: 10.1186/s40643-021-00375-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
The development of yeast that converts raw corn or cassava starch to ethanol without adding the exogenous α-amylase and/or glucoamylase would reduce the overall ethanol production cost. In this study, two copies of codon-optimized Saccharomycopsis fibuligera glucoamylase genes were integrated into the genome of the industrial Saccharomyces cerevisiae strain CCTCC M94055, and the resulting strain CIBTS1522 showed comparable basic growth characters with the parental strain. We systemically evaluated the fermentation performance of the CIBTS1522 strain using the raw corn or cassava starch at small and commercial-scale, and observed that a reduction of at least 40% of the dose of glucoamylase was possible when using the CIBTS1522 yeast under real ethanol production condition. Next, we measured the effect of the nitrogen source, the phosphorous source, metal ions, and industrial microbial enzymes on the strain's cell wet weight and ethanol content, the nitrogen source and acid protease showed a positive effect on these parameters. Finally, orthogonal tests for some other factors including urea, acid protease, inoculum size, and glucoamylase addition were conducted to further optimize the ethanol production. Taken together, the CIBTS1522 strain was identified as an ideal candidate for the bioethanol industry and a better fermentation performance could be achieved by modifying the industrial culture media and condition.
Collapse
Affiliation(s)
- Xin Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Bei Liao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Angel Yeast Co., Ltd, Yichang, 443000, Hubei, China
| | - Zhijun Li
- Angel Yeast Co., Ltd, Yichang, 443000, Hubei, China
| | - Guangxin Liu
- Angel Yeast Co., Ltd, Yichang, 443000, Hubei, China
| | - Liuyang Diao
- Biosense Suzhou Limited, Suzhou, 215021, Jiangsu, China
| | - Fenghui Qian
- Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, 201201, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, 313000, Zhejiang, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Hayashi N, Minato T, Kanai K, Ikushima S, Yoshida S, Tada S, Taguchi H, Ogawa Y. Differentiation of Species Belonging to Saccharomyces Sensu Stricto Using a Loop-Mediated Isothermal Amplification Method. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2009-0309-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nobuyuki Hayashi
- Research Laboratories for Brewing, Kirin Brewery Company, Limited, Yokohama, Japan
| | - Toshiko Minato
- Research Laboratories for Brewing, Kirin Brewery Company, Limited, Yokohama, Japan
| | - Keiko Kanai
- Central Laboratories for Frontier Technology, Kirin Holdings Company, Limited, Yokohama, Japan
| | - Shigehito Ikushima
- Central Laboratories for Frontier Technology, Kirin Holdings Company, Limited, Yokohama, Japan
| | - Satoshi Yoshida
- Central Laboratories for Frontier Technology, Kirin Holdings Company, Limited, Yokohama, Japan
| | - Setsuzo Tada
- Quality Assurance Center for Alcoholic Beverages, Kirin Brewery Company, Limited, Yokohama, Japan
| | - Hiroshi Taguchi
- Quality Assurance Center for Alcoholic Beverages, Kirin Brewery Company, Limited, Yokohama, Japan
| | - Yutaka Ogawa
- Research Laboratories for Brewing, Kirin Brewery Company, Limited, Yokohama, Japan
| |
Collapse
|
6
|
Abstract
Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This "web of life" recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement.
Collapse
|
7
|
Abstract
This article surveys methods for the enzymatic conversion of starch, involving hydrolases and nonhydrolyzing enzymes, as well as the role of microorganisms producing such enzymes. The sources of the most common enzymes are listed. These starch conversions are also presented in relation to their applications in the food, pharmaceutical, pulp, textile, and other branches of industry. Some sections are devoted to the fermentation of starch to ethanol and other products, and to the production of cyclodextrins, along with the properties of these products. Light is also shed on the enzymes involved in the digestion of starch in human and animal organisms. Enzymatic processes acting on starch are useful in structural studies of the substrates and in understanding the characteristics of digesting enzymes. One section presents the application of enzymes to these problems. The information that is included covers the period from the early 19th century up to 2009.
Collapse
|
8
|
Lyness CA, Meaden PG. EXPRESSION OF THESTA2GLUCOAMYLASE GENE OFSACCHAROMYCES CEREVISIAEIN BREWERS' YEAST. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1997.tb00935.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Vakeria D, Box W, Bird L, Mellor J. CHARACTERISATION OF AMYLOLYTIC BREWING YEAST. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1996.tb00891.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
|
11
|
Duval EH, Alves SL, Dunn B, Sherlock G, Stambuk BU. Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 2009; 109:248-59. [PMID: 20070441 DOI: 10.1111/j.1365-2672.2009.04656.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. METHODS AND RESULTS The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. CONCLUSIONS Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Collapse
Affiliation(s)
- E H Duval
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
12
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 2007; 71:282-94. [PMID: 17554046 PMCID: PMC1899881 DOI: 10.1128/mmbr.00037-06] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources.
Collapse
Affiliation(s)
- Anne M Dranginis
- Department of Biological Science, St John's University, Queens, New York, USA
| | | | | | | |
Collapse
|
14
|
Mertens JA, Skory CD. Isolation and characterization of a second glucoamylase gene without a starch binding domain from Rhizopus oryzae. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Peres MF, Souza CS, Thomaz D, de Souza AR, Laluce C. Partitioning of the glucoamylase activity at the cell surfaces in cultures of Saccharomyces. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
. RS, . IN, . GE. Bioconversion of Raw Starch to SCP by Coculture of Cryptococcus aerius and
Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2005. [DOI: 10.3923/jbs.2005.717.723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Gagiano M, Bester M, van Dyk D, Franken J, Bauer FF, Pretorius IS. Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability. Mol Microbiol 2003; 47:119-34. [PMID: 12492858 DOI: 10.1046/j.1365-2958.2003.03247.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the cell surface protein, Muc1p, was shown to be critical for invasive growth and pseudohyphal differentiation. The transcription of MUC1 and of the co-regulated STA2 glucoamylase gene is controlled by the interplay of a multitude of regulators, including Ste12p, Tec1p, Flo8p, Msn1p and Mss11p. Genetic analysis suggests that Mss11p plays an essential role in this regulatory process and that it functions at the convergence of at least two signalling cascades, the filamentous growth MAPK cascade and the cAMP-PKA pathway. Despite this central role in the control of filamentous growth and starch metabolism, the exact molecular function of Mss11p is unknown. We subjected Mss11p to a detailed molecular analysis and report here on its role in transcriptional regulation, as well as on the identification of specific domains required to confer transcriptional activation in response to nutritional signals. We show that Mss11p contains two independent transactivation domains, one of which is a highly conserved sequence that is found in several proteins with unidentified function in mammalian and invertebrate organisms. We also identify conserved amino acids that are required for the activation function.
Collapse
Affiliation(s)
- Marco Gagiano
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, ZA-7600, South Africa
| | | | | | | | | | | |
Collapse
|
18
|
Gagiano M, Bauer FF, Pretorius IS. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2002; 2:433-70. [PMID: 12702263 DOI: 10.1111/j.1567-1364.2002.tb00114.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Heterotrophic organisms rely on the ingestion of organic molecules or nutrients from the environment to sustain energy and biomass production. Non-motile, unicellular organisms have a limited ability to store nutrients or to take evasive action, and are therefore most directly dependent on the availability of nutrients in their immediate surrounding. Such organisms have evolved numerous developmental options in order to adapt to and to survive the permanently changing nutritional status of the environment. The phenotypical, physiological and molecular nature of nutrient-induced cellular adaptations has been most extensively studied in the yeast Saccharomyces cerevisiae. These studies have revealed a network of sensing mechanisms and of signalling pathways that generate and transmit the information on the nutritional status of the environment to the cellular machinery that implements specific developmental programmes. This review integrates our current knowledge on nutrient sensing and signalling in S. cerevisiae, and suggests how an integrated signalling network may lead to the establishment of a specific developmental programme, namely pseudohyphal differentiation and invasive growth.
Collapse
Affiliation(s)
- Marco Gagiano
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | | | | |
Collapse
|
19
|
Rubio-Texeira M, Arévalo-Rodríguez M, Lequerica JL, Polaina J. Lactose utilization by Saccharomyces cerevisiae strains expressing Kluyveromyces lactis LAC genes. J Biotechnol 2001; 84:97-106. [PMID: 11090681 DOI: 10.1016/s0168-1656(00)00350-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Whey generated in cheese manufacture continues being an industrial problem without a satisfactory solution. Genetic modification of the yeast S. cerevisiae to obtain strains able to utilize lactose, is a prerequisite for the utilization of this yeast to convert cheese whey into useful fermentation products (i.e. biomass, heterologous protein and other recombinant products). Although the construction of S. cerevisiae Lac(+) strains has been achieved by different strategies, most of these strains have unsuitable characteristics, such as genetic instability of the Lac phenotype or diauxic growth. In previous communications we have described the construction of genetically stable strains of S. cerevisiae that assimilate lactose with a high efficiency. These strains carry multiple copies of Kluyveromyces lactis LAC4 and LAC12 genes, which code for a beta-galactosidase and a lactose permease, respectively. In this work we report additional results about the effect of gene dosage, and analyze the performance of a selected strain in the bioconversion of cheese whey. Additionally, we describe the construction of a new strain, which combines the Lac(+) phenotype with additional properties of biotechnological interest: flocculence, and the ability to hydrolyze starch.
Collapse
Affiliation(s)
- M Rubio-Texeira
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de correos 73, E46100, Valencia, Burjassot, Spain.
| | | | | | | |
Collapse
|
20
|
Gagiano M, Van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS. Divergent regulation of the evolutionarily closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 1999; 181:6497-508. [PMID: 10515942 PMCID: PMC103787 DOI: 10.1128/jb.181.20.6497-6508.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' upstream regions of the Saccharomyces cerevisiae glucoamylase-encoding genes STA1 to -3 and of the MUC1 (or FLO11) gene, which is critical for pseudohyphal development, invasive growth, and flocculation, are almost identical, and the genes are coregulated to a large extent. Besides representing the largest yeast promoters identified to date, these regions are of particular interest from both a functional and an evolutionary point of view. Transcription of the genes indeed seems to be dependent on numerous transcription factors which integrate the information of a complex network of signaling pathways, while the very limited sequence differences between them should allow the study of promoter evolution on a molecular level. To investigate the transcriptional regulation, we compared the transcription levels conferred by the STA2 and MUC1 promoters under various growth conditions. Our data show that transcription of both genes responded similarly to most environmental signals but also indicated significant divergence in some aspects. We identified distinct areas within the promoters that show specific responses to the activating effect of Flo8p, Msn1p (or Mss10p, Fup1p, or Phd2p), and Mss11p as well as to carbon catabolite repression. We also identified the STA10 repressive effect as the absence of Flo8p, a transcriptional activator of flocculation genes in S. cerevisiae.
Collapse
Affiliation(s)
- M Gagiano
- Institute for Wine Biotechnology, Department of Microbiology, University of Stellenbosch, Stellenbosch ZA-7600, South Africa
| | | | | | | | | |
Collapse
|
21
|
Sturtevant J, Dixon F, Wadsworth E, Latge JP, Zhao XJ, Calderone R. Identification and cloning of GCA1, a gene that encodes a cell surface glucoamylase from Candida albicans. Med Mycol 1999; 37:357-66. [PMID: 10520161 DOI: 10.1046/j.1365-280x.1999.00244.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adherence of yeast cells of Candida albicans to human oesophageal cells is greater when cells are grown in 500 mM D-galactose in comparison to D-glucose at the same concentration. Moreover, a 190 kDa mannoprotein (MP190) from a yeast cell wall preparation is highly expressed when cells are grown in the presence of galactose but less so in glucose. We now report on the identification of the MP190 and the isolation of its encoding gene. MP190 was purified, and three internal peptides were isolated and sequenced. Each of the three peptides showed significant homology (65-85%) with a glucoamylase (GAM1) from the yeast, Schwanniomyces occidentalis. In order to isolate the C. albicans homologue of GAM1 (GCA1), we probed a genomic library with a 0.9-kb internal fragment of the S. occidentalis GAM1 and isolated a 2.3-kb clone that corresponded to the 5' region of the gene. Polymerase chain reaction (PCR) amplification was used to isolate the remainder of the open reading frame. GCA1 encodes a 946 amino acid protein containing three putative hydrophobic, membrane-spanning domains and 15 potential N-glycosylation sites. Both Gca1p and GAM1 are novel to the family of glycosyl hydrolases. Northern analysis indicated that GCA1 is transcribed to a greater extent in galactose than in sucrose or glucose. Also, using reverse transcriptase (RT)-PCR, we observed expression of GCA1 in a rat model of oral candidiasis, indicating that Gca1p is expressed during disease development.
Collapse
Affiliation(s)
- J Sturtevant
- Georgetown University Medical Center, Department of Microbiology and Immunology, Washington, DC 20007, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Ducki A, Grundmann O, Konermann L, Mayer F, Hoppert M. Glucoamylase from Thermoanaerobacterium thermosaccharolyticum: Sequence studies and analysis of the macromolecular architecture of the enzyme. J GEN APPL MICROBIOL 1998; 44:327-335. [PMID: 12501412 DOI: 10.2323/jgam.44.327] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A chromosomal DNA fragment with a length of 2,025 bp, carrying the structural gene coding for glucoamylase in Thermoanaerobacterium thermosaccharolyticum, was cloned and sequenced. It coded for 695 amino acids, representing a polypeptide with a predicted molecular mass of 77.5 kDa. The deduced amino acid sequence exhibited high homologies with the glucoamylase sequence of another bacterial glucoamylase (Clostridium sp. G0005) and with fungal glucoamylases. The catalytic domain (amino acids 271 to 695) of the T. thermosaccharolyticum enzyme shared a high degree of similarity (five conserved regions) with the catalytic domain of Aspergillus awamori glucoamylase. By comparing the secondary structure of the sequence of the catalytic domain of the T. thermosaccharolyticum enzyme with that of glucoamylase from A. awamori, and on the basis of X-ray crystallographic data available for the A. awamori enzyme, it turned out that, most probably, both enzymes have a catalytic domain organized into an "(alpha/alpha)(6)-barrel" and an overall size and shape that is very similar. These findings confirm and extend our working model for the macromolecular architecture of the T. thermosaccharolyticum glucoamylase obtained, in earlier experiments, by electron microscopy of negatively stained isolated enzyme molecules. Antibodies for an enzyme-specific peptide located near the active site were successfully applied for inhibition studies of enzyme activity and for electron microscopic epitope mapping. A study comparing the site of attachment of this kind of antibody to the T. thermosaccharolyticum glucoamylase molecule with the expected attachment site as deduced from the A. awamori enzyme structure confirmed the close similarity of both glucoamylases regarding the macromolecular architecture of that part of the enzyme carrying the catalytic center, though helices H9, H10, and H11 in peripheral parts of the A. awamori enzyme are missing in the T. thermosaccharolyticum enzyme.
Collapse
Affiliation(s)
- Andrea Ducki
- Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
23
|
JAMES JENNYLYNDA, LEE BYONGH. GLUCOAMYLASES: MICROBIAL SOURCES, INDUSTRIAL APPLICATIONS AND MOLECULAR BIOLOGY ? A REVIEW. J Food Biochem 1997. [DOI: 10.1111/j.1745-4514.1997.tb00223.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Hülseweh B, Dahlems UM, Dohmen J, Strasser AW, Hollenberg CP. Characterization of the active site of Schwanniomyces occidentalis glucoamylase by in vitro mutagenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:128-33. [PMID: 9063455 DOI: 10.1111/j.1432-1033.1997.00128.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Site-directed mutagenesis was performed to define the active site of the Schwanniomyces occidentalis glucoamylase. The mutated GAM1 genes were expressed in Saccharomyces cerevisiae, and enzymatic and growth properties of the transformants were determined. Mutants were transcribed and translated similar to the wild-type glucoamylase. Therefore, all effects on enzymatic activity could be referred to single amino acid substitutions. Asp470 was shown to be essential for the enzyme activity. Replacement of Asp470 by glycine led to a complete loss of activity. We suppose that Asp470 serves as a general acid-base and stabilizes the formation of the intermediate carbenium ion. Substitution of Trp468 by alanine affected predominantly the alpha-1,6 activity and not the alpha-1,4 activity of the enzyme. The exchange impaired substrate binding as well as enzymatic catalysis. An influence of amino acid 474 on the substrate specificity could not be demonstrated. Exchanges at position 474 exhibited K(m) and Vmax values similar to wild-type glucoamylase.
Collapse
Affiliation(s)
- B Hülseweh
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | | | | | |
Collapse
|
25
|
James JA, Robert N, Lee BH. Cloning and expression of a glucoamylase gene from Lactobacillus amylovorus ATCC 33621 in Escherichia coli. Biotechnol Lett 1996. [DOI: 10.1007/bf00129344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Lo WS, Dranginis AM. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 1996; 178:7144-51. [PMID: 8955395 PMCID: PMC178626 DOI: 10.1128/jb.178.24.7144-7151.1996] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the characterization of a gene encoding a novel flocculin related to the STA genes of yeast, which encode secreted glucoamylase. The STA genes comprise sequences that are homologous to the sporulation-specific glucoamylase SGA and to two other sequences, S2 and S1. We find that S2 and S1 are part of a single gene which we have named FLO11. The sequence of FLO11 reveals a 4,104-bp open reading frame on chromosome IX whose predicted product is similar in overall structure to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. An amino-terminal domain containing a signal sequence and a carboxy-terminal domain with homology to GPI (glycosyl-phosphatidyl-inositol) anchor-containing proteins are separated by a central domain containing a highly repeated threonine- and serine-rich sequence. Yeast cells that express FLO11 aggregate in the calcium-dependent process of flocculation. Flocculation is abolished when FLO11 is disrupted. The product of STA1 also is shown to have flocculating activity. When a green fluorescent protein fusion of FLO11 was expressed from the FLO11 promoter on a single-copy plasmid, fluorescence was observed in vivo at the periphery of cells. We propose that FLO11 encodes a flocculin because of its demonstrated role in flocculation, its structural similarity to other members of the FLO gene family, and the cell surface location of its product. FLO11 gene sequences are present in all yeast strains tested, including all standard laboratory strains, unlike the STA genes which are present only in the variant strain Saccharomyces cerevisiae var. diastaticus. FLO11 differs from all other yeast flocculins in that it is located near a centromere rather than a telomere, and its expression is regulated by mating type. Repression of FLO11-dependent flocculation in diploids is conferred by the mating-type repressor al/alpha2.
Collapse
Affiliation(s)
- W S Lo
- Department of Biological Sciences, St. John's University, Jamaica, New York 11439, USA
| | | |
Collapse
|
27
|
Lambrechts MG, Bauer FF, Marmur J, Pretorius IS. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 1996; 93:8419-24. [PMID: 8710886 PMCID: PMC38686 DOI: 10.1073/pnas.93.16.8419] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pseudohyphal differentiation in Saccharomyces cerevisiae was first described as a response of diploid cells to nitrogen limitation. Here we report that haploid and diploid starch-degrading S. cerevisiae strains were able to switch from a yeast form to a filamentous pseudohyphal form in response to carbon limitation in the presence of an ample supply of nitrogen. Two genes, MSS10 and MUC1, were cloned and shown to be involved in pseudohyphal differentiation and invasive growth. The deletion of MSS10 resulted in extremely reduced amounts of pseudohyphal differentiation and invasive growth, whereas the deletion of MUC1 abolished pseudohyphal differentiation and invasive growth completely. Mss10 appears to be a transcriptional activator that responds to nutrient limitation and coregulates the expression of MUC1 and the STA1-3 glucoamylase genes, which are involved in starch degradation. MUC1 encodes a 1367-amino acid protein, containing several serine/threonine-rich repeats. Muc1 is a putative integral membrane-bound protein, similar to mammalian mucin-like membrane proteins that have been implicated to play a role in the ability of cancer cells to invade other tissues.
Collapse
Affiliation(s)
- M G Lambrechts
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|
28
|
Shih NJ, Labbé RG. Characterization and distribution of amylases during vegetative cell growth and sporulation of Clostridium perfringens. Can J Microbiol 1996; 42:628-33. [PMID: 8764679 DOI: 10.1139/m96-086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Clostridium perfringens produced eight extracellular and two intracellular amylolytic activities when examined by zymograms following polyacrylamide gel electrophoresis under native conditions. The major intracellular amylase was isolated from vegetative cells of C. perfringens. It possessed an estimated molecular mass of 112 kDa. Sulfhydryl and phenol functional groups were essential to its activity. The amylase was endo-acting on starch and also hydrolyzed pullulan. Polyclonal antisera against a purified extracellular amylase did not cross-react with intracellular amylase and the two amylases were biochemically different. The distribution of extracellular amylolytic activities of sporulating cells was different from that of vegetative cells, whereas the distribution of intracellular amylolytic activities remained identical. A significant increase of a particular amylase (A8) occurred in the extracellular fluid during sporulation compared with that during vegetative growth. Regulation of the excretion of amylase(s) may be sporulation and enterotoxingenicity related.
Collapse
Affiliation(s)
- N J Shih
- Department of Food Science, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
29
|
Lambrechts MG, Sollitti P, Marmur J, Pretorius IS. A multicopy suppressor gene,MSS10, restoresSTA2 expression inSaccharomyces cerevisiae strains containing theSTA10 repressor gene. Curr Genet 1996. [DOI: 10.1007/bf02426956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Lambrechts MG, Pretorius IS, Marmur J, Sollitti P. The S1, S2 and SGA1 ancestral genes for the STA glucoamylase genes all map to chromosome IX in Saccharomyces cerevisiae. Yeast 1995; 11:783-7. [PMID: 7668048 DOI: 10.1002/yea.320110810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The polymorphic extracellular glucoamylase-encoding genes STA1 (chr. IV), STA2 (chr. II) and STA3 (chr. XIV), from Saccharomyces cerevisiae var. diastaticus probably evolved by genomic rearrangement of DNA regions (S1, S2 and SGA1) present in S. cerevisiae, and subsequent translocation to unlinked regions of chromosomal regions. S1, encoding a homologue to the threonine/serine-rich domain of STA glucoamylases (GAI-III), mapped to the right arm of chromosome IX. S2, encoding the hydrophobic leader peptide of GAI-III), was also mapped on the right arm of chromosome IX, next to S1, close to DAL81. The SGA1 sporulation-specific, intracellular glucoamylase-encoding gene is located on the left arm of chromosome IX, 32 kb proximal of HIS5.
Collapse
Affiliation(s)
- M G Lambrechts
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|
31
|
Ahn JH, Park SH, Kang HS. Inactivation of the UAS1 of STA1 by glucose and STA10 and identification of two loci, SNS1 and MSS1, involved in STA10-dependent repression in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:529-37. [PMID: 7700227 DOI: 10.1007/bf00298959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been reported that two upstream activation sites, UAS1 and UAS2, exist in the 5' non-coding region of the STA1 gene of Saccharomyces cerevisiae var. diastaticus. Based on studies using a UAS1STA1-CYC1-lacZ fusion, we divided UAS1 into two subsites, UAS1-1 and UAS1-2. The activation of the CYC1 promoter by UAS1STA1 was repressed by glucose in the culture medium and by the STA10 gene. The MATa/MAT alpha mating type configuration did not, however, affect UAS1STA1 activation. The UAS1STA1-CYC1-lacZ expression system was used to study STA10 repression further. A mutant insensitive to STA10-dependent repression was isolated. This sns1 mutation was not linked to STA10 and partially overcame the repressive effect of STA10 at the transcriptional level. From a genomic library constructed in the UAS1STA1-CYC1-lacZ expression vector, the MSS1 locus (multicopy suppressor of sns1) was isolated. This suppression of the sns1 mutation by multiple copies of the MSS1 locus occurred at the transcriptional level. When a gene disruption experiment was performed to examine the effect of a mss1 mutation, the sns1 mss1 double mutants produced 4 times higher levels of STA1 transcripts in the presence of STA10 than did the sns1 strain. Data presented in this paper suggest that both SNS1 and MSS1 loci are involved in STA10-dependent repression.
Collapse
MESH Headings
- Cloning, Molecular/methods
- Cytochrome c Group/genetics
- Cytochromes c
- Down-Regulation
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal/drug effects
- Gene Expression Regulation, Fungal/genetics
- Genes, Fungal/genetics
- Genes, Mating Type, Fungal
- Glucose/pharmacology
- Promoter Regions, Genetic/genetics
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Regulatory Sequences, Nucleic Acid/genetics
- Repressor Proteins/genetics
- Restriction Mapping
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Saccharomyces cerevisiae Proteins
- Suppression, Genetic
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- J H Ahn
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | | | |
Collapse
|
32
|
Bajszár G, Croonenberghs J, Karnushina IL, Lee SY, Mattoon JR. Properties and engineering of a mutant STA promoter of Saccharomyces diastaticus. Appl Biochem Biotechnol 1994; 44:187-204. [PMID: 8017902 DOI: 10.1007/bf02921654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new allelic variant of the STA2 gene of S. diastaticus, designated as STA2K, was cloned and characterized (1; accompanying paper). An application-oriented analysis of the promoter region of STA2K is described, with an emphasis on its peculiar structural feature: A 1.1-kb natural deletion located 189 nucleotides upstream of the translation start codon. The strength of the STA2K promoter was found comparable to that of known strong constitutive yeast promoters (ADH1, GAPDH). Regulated glucoamylase expression was demonstrated by chimeric promoters, which were constructed by placing the STA2K promoter under the control of either the PHO5 or CYC1 upstream regulatory sequences. On high-copy-number vectors, induction of the UASPHO5-STA2K chimeric promoter by phosphate depletion resulted in a destructive overexpression of the secreted glucoamylase, which completely halted cell growth, and promoted cell decay. In contrast, UASCYC1 was shown to mediate a fine-tuned regulation both by glucose concentration and, indirectly, by starch, the substrate for the glucoamylase to produce glucose.
Collapse
Affiliation(s)
- G Bajszár
- Biotechnology Center, University of Colorado at Colorado Springs 80933-7150
| | | | | | | | | |
Collapse
|
33
|
Kim K, Bajszár G, Lee SY, Knudsen F, Mattoon JR. Cloning of a new allelic variant of a Saccharomyces diastaticus glucoamylase gene and its introduction into industrial yeasts. Appl Biochem Biotechnol 1994; 44:161-85. [PMID: 8017901 DOI: 10.1007/bf02921653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new allelic variant of the STA2 gene, designated as STA2K, coding for a secreted glucoamylase, was cloned. Differences were revealed both in the structural gene and in the promoter region, as compared to other STA genes. The most peculiar structural features of STA2K are 1. a 1.1-kb natural deletion in its promoter located 189 nucleotides upstream of the translation start codon; and 2. an Asn-->Asp single amino acid change within the putative active site of the encoded glucoamylase. Neither the presence of glucose in the medium nor the host cell's mating type constellation affected the expression level of STA2K in S. cerevisiae. Self-replicating yeast plasmids containing STA2K were constructed and used to transform a laboratory yeast strain and various brewing strains. Pilot brewing tests with glucoamylase-secreting transformants of a brewing strain produced superattenuated beers at accelerated fermentation rates.
Collapse
Affiliation(s)
- K Kim
- Biotechnology Center, University of Colorado, Colorado Springs 80933-7150
| | | | | | | | | |
Collapse
|
34
|
Lotti M, Grandori R, Fusetti F, Longhi S, Brocca S, Tramontano A, Alberghina L. Cloning and analysis of Candida cylindracea lipase sequences. Gene 1993; 124:45-55. [PMID: 8440480 DOI: 10.1016/0378-1119(93)90760-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lipases (Lip) hydrolyze triglycerides into fatty acids and glycerol. Lip produced by the yeast Candida cylindracea are encoded by multiple genomic sequences. We report the molecular cloning and characterization of three genes from this family. They encode putative mature 57-kDa proteins of 534 amino acids (aa). To date, five Lip-encoding genomic sequences from C. cylindracea have been characterized in our laboratory. The five deduced aa sequences share an overall homology of 80%. These sequences have been aligned with each other and with those of homologous enzymes, the Lip from the mould Geotrichum candidum and the acetylcholinesterase from Torpedo californica, whose three-dimensional structures have been solved by X-ray analysis. The C. cylindracea Lip appear to have a structural organization similar to that described for both enzymes.
Collapse
Affiliation(s)
- M Lotti
- Dipartimento di Fisiologia e Biochemica Generali, Università degli Studi di Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Lyness CA, Jones CR, Meaden PG. The STA2 and MEL1 genes of Saccharomyces cerevisiae are idiomorphic. Curr Genet 1993; 23:92-4. [PMID: 8381338 DOI: 10.1007/bf00336753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The STA2 (glucoamylase) gene of Saccharomyces cerevisiae has been mapped close to the end of the left arm of chromosome II. Meiotic analysis of a cross between a haploid strain containing STA2, and another strain carrying the melibiase gene MEL1 (which is known to be at the end of the left arm of chromosome II) produced parental ditype tetrads only. Since there is no significant DNA sequence similarity between the STA2 and MEL1 genes, or their respective flanking regions, we conclude that these two genes are carried by separate non-hybridizing sequences of chromosomal DNA, either of which can reside at the end of the left arm of chromosome II. By analogy with the mating-type locus of Neurospora crassa, we suggest that the STA2 and MEL1 genes are idiomorphs with respect to one another.
Collapse
Affiliation(s)
- C A Lyness
- International Centre for Brewing and Distilling, Heriot-Watt University, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
36
|
Steyn AJ, Pretorius IS. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae. Gene 1991; 100:85-93. [PMID: 2055483 DOI: 10.1016/0378-1119(91)90353-d] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A glucoamylase-encoding gene (STA2) from Saccharomyces diastaticus and an alpha-amylase-encoding gene (AMY) from Bacillus amyloliquefaciens were cloned separately into a yeast-integrating shuttle vector (YIp5), generating recombinant plasmids pSP1 and pSP2, respectively. The STA2 and AMY genes were jointly cloned into YIp5, generating plasmid pSP3. Subsequently, the dominant selectable marker APH1, encoding resistance to Geneticin G418 (GtR), was cloned into pSP3, resulting in pSP4. For enhanced expression of GtR, the APH1 gene was fused to the GAL10 promoter and terminated by the URA3 terminator, resulting in pSP5. Plasmid pSP5 was converted to a circular minichromosome (pSP6) by the addition of the ARS1 and CEN4 sequences. Laboratory strains of Saccharomyces cerevisiae transformed with plasmids pSP1 through pSP6, stably produced and secreted glucoamylase and/or alpha-amylase. Brewers' and distillers' yeast transformed with pSP6 were also capable of secreting amylolytic enzymes. Yeast transformants containing pSP1, pSP2 and pSP3 assimilated soluble starch with an efficiency of 69%, 84% and 93%, respectively. The major starch hydrolysis products produced by crude amylolytic enzymes found in the culture broths of the pSP1-, pSP2- and pSP3-containing transformants, were glucose, glucose and maltose (1:1), and glucose and maltose (3:1), respectively. These results confirmed that co-expression of the STA2 and AMY genes synergistically enhanced starch degradation.
Collapse
Affiliation(s)
- A J Steyn
- Department of Microbiology, University of Stellenbosch, South Africa
| | | |
Collapse
|
37
|
Lambrechts MG, Pretorius IS, Sollitti P, Marmur J. Primary structure and regulation of a glucoamylase-encoding gene (STA2) in Saccharomyces diastaticus. Gene 1991; 100:95-103. [PMID: 2055484 DOI: 10.1016/0378-1119(91)90354-e] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have determined the complete nucleotide (nt) sequence of a 5070-bp DNA fragment containing a glucoamylase-encoding gene (STA2) from Saccharomyces diastaticus. The 5' transcription start points for STA1, STA2 and STA3 were determined by primer extension of their respective mRNAs using reverse transcriptase. The sequence data show one major open reading frame (ORF) of 767 amino acids encoding GAII with a calculated Mr of 82,514. The 5' region in the ORF contains two ATG sequences within 30 nt of each other. The upstream region of STA2 was amplified by the polymerase chain reaction (PCR) and fused to the Escherichia coli lacZ gene. Some of the PCR products contained mutations in ATG1 and/or ATG2. Results indicated that both ATG1 and ATG2 encode functional translation start codons, but ATG2 was shown to encode the stronger initiator. The upstream region of STA2 contains a canonical sequence that is homologous to known sites of repression by the MATa/MAT alpha-encoded repressor. Also, consensus RAP1 (Repressor-Activator Protein 1)-binding sites are located in the 5' upstream region and within the coding region of STA2.
Collapse
Affiliation(s)
- M G Lambrechts
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|