Holmes KD, Mattar P, Marsh DR, Jordan V, Weaver LC, Dekaban GA. The C-terminal C1 cassette of the N -methyl-D-aspartate receptor 1 subunit contains a bi-partite nuclear localization sequence.
J Neurochem 2002;
81:1152-65. [PMID:
12068064 DOI:
10.1046/j.1471-4159.2002.00865.x]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N -methyl-D-aspartate receptor (NMDAR) is a multimeric transmembrane protein composed of at least two subunits. One subunit, NR1, is derived from a single gene and can be subdivided into three regions: the N-terminal extracellular domain, the transmembrane regions, and the C-terminal intracellular domain. The N-terminal domain is responsible for Mg2+ metal ion binding and channel activity, while the transmembrane domains are important for ion channel formation. The intracellular C-terminal domain is involved in regulating receptor activity and subcellular localization. Our recent experiments indicated that the intracellular C-terminal domain, when expressed independently, localizes almost exclusively in the nucleus. An examination of the amino acid sequence reveals the presence of a putative nuclear localization sequence (NLS) in the C1 cassette of the NR1 intracellular C-terminus. Using an expression vector designed to test whether a putative NLS sequence is a valid, functional NLS, we have demonstrated that a bi-partite NLS does in fact exist within the NR1-1 C-terminus. Computer algorithms identified a putative helix-loop-helix motif that spanned the C0C1 cassettes of the C-terminus. These data suggest that the NR1 subunit may represent another member of a family of transmembrane proteins that undergo intramembrane proteolysis, releasing a cytosolic peptide that is actively translocated to the nucleus leading to alterations in gene regulation.
Collapse