1
|
Wang L, Yang F, Ye J, Zhang L, Jiang X. Insight into the role of IRF7 in skin and connective tissue diseases. Exp Dermatol 2024; 33:e15083. [PMID: 38794808 DOI: 10.1111/exd.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024]
Abstract
Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Gholamzad A, Khakpour N, Gholamzad M, Roudaki Sarvandani MR, Khosroshahi EM, Asadi S, Rashidi M, Hashemi M. Stem cell therapy for HTLV-1 induced adult T-cell leukemia/lymphoma (ATLL): A comprehensive review. Pathol Res Pract 2024; 255:155172. [PMID: 38340584 DOI: 10.1016/j.prp.2024.155172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare and aggressive form of cancer associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. The emerging field of stem cell therapies for ATLL is discussed, highlighting the potential of hematopoietic stem cell transplantation (HSCT) and genetically modified stem cells. HSCT aims to eradicate malignant T-cells and restore a functional immune system through the infusion of healthy donor stem cells. Genetically modified stem cells show promise in enhancing their ability to target and eliminate ATLL cells. The article presents insights from preclinical studies and limited clinical trials, emphasizing the need for further research to establish the safety, efficacy, and long-term outcomes of stem cell therapies for ATLL and challenges associated with these innovative approaches are also explored. Overall, stem cell therapies hold significant potential in revolutionizing ATLL treatment, and ongoing clinical trials aim to determine their benefits in larger patient populations.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Islamic Azad University of Medical Science, Tehran, Iran.
| | | | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Cook LB, Fuji S, Hermine O, Bazarbachi A, Ramos JC, Ratner L, Horwitz S, Fields P, Tanase A, Bumbea H, Cwynarski K, Taylor G, Waldmann TA, Bittencourt A, Marcais A, Suarez F, Sibon D, Phillips A, Lunning M, Farid R, Imaizumi Y, Choi I, Ishida T, Ishitsuka K, Fukushima T, Uchimaru K, Takaori-Kondo A, Tokura Y, Utsunomiya A, Matsuoka M, Tsukasaki K, Watanabe T. Revised Adult T-Cell Leukemia-Lymphoma International Consensus Meeting Report. J Clin Oncol 2019; 37:677-687. [PMID: 30657736 PMCID: PMC6494249 DOI: 10.1200/jco.18.00501] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Adult T-cell leukemia-lymphoma (ATL) is a distinct mature T-cell malignancy caused by chronic infection with human T-lymphotropic virus type 1 with diverse clinical features and prognosis. ATL remains a challenging disease as a result of its diverse clinical features, multidrug resistance of malignant cells, frequent large tumor burden, hypercalcemia, and/or frequent opportunistic infection. In 2009, we published a consensus report to define prognostic factors, clinical subclassifications, treatment strategies, and response criteria. The 2009 consensus report has become the standard reference for clinical trials in ATL and a guide for clinical management. Since the last consensus there has been progress in the understanding of the molecular pathophysiology of ATL and risk-adapted treatment approaches. METHODS Reflecting these advances, ATL researchers and clinicians joined together at the 18th International Conference on Human Retrovirology-Human T-Lymphotropic Virus and Related Retroviruses-in Tokyo, Japan, March, 2017, to review evidence for current clinical practice and to update the consensus with a new focus on the subtype classification of cutaneous ATL, CNS lesions in aggressive ATL, management of elderly or transplantation-ineligible patients, and treatment strategies that incorporate up-front allogeneic hematopoietic stem-cell transplantation and novel agents. RESULTS As a result of lower-quality clinical evidence, a best practice approach was adopted and consensus statements agreed on by coauthors (> 90% agreement). CONCLUSION This expert consensus highlights the need for additional clinical trials to develop novel standard therapies for the treatment of ATL.
Collapse
Affiliation(s)
- Lucy B Cook
- 1 Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom.,2 Imperial College London, London, United Kingdom
| | - Shigeo Fuji
- 3 Osaka International Cancer Institute, Osaka, Japan
| | | | | | | | - Lee Ratner
- 7 Washington University School of Medicine, St Louis, MO
| | - Steve Horwitz
- 8 Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul Fields
- 9 Guys and St Thomas Hospital, Kings Health Partners, London, United Kingdom
| | - Alina Tanase
- 10 Fundeni Clinical Institute, Bucharest, Romania
| | - Horia Bumbea
- 11 Emergency University Hospital, Bucharest, Romania
| | - Kate Cwynarski
- 12 University College London Hospitals NHS Trust, London, United Kingdom
| | | | | | | | | | | | | | | | | | - Reza Farid
- 17 Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ilseung Choi
- 19 National Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | | - Yoshiki Tokura
- 25 Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | |
Collapse
|
4
|
Nucks1 synergizes with Trp53 to promote radiation lymphomagenesis in mice. Oncotarget 2018; 7:61874-61889. [PMID: 27542204 PMCID: PMC5308697 DOI: 10.18632/oncotarget.11297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
NUCKS1 is a 27 kD vertebrate-specific protein, with a role in the DNA damage response. Here, we show that after 4 Gy total-body X-irradiation, Trp53+/− Nucks1+/− mice more rapidly developed tumors, particularly thymic lymphoma (TL), than Trp53+/− mice. TLs in both cohorts showed loss of heterozygosity (LOH) of the Trp53+ allele in essentially all cases. In contrast, LOH of the Nucks1+ allele was rare. Nucks1 expression correlated well with Nucks1 gene dosage in normal thymi, but was increased in the majority of TLs from Trp53+/− Nucks1+/− mice, suggesting that elevated Nucks1 message may be associated with progression towards malignancy in vivo. Trp53+/− Nucks1+/− mice frequently succumbed to CD4- CD8- TLs harboring translocations involving Igh but not Tcra/d, indicating TLs in Trp53+/− Nucks1+/− mice mostly originated prior to the double positive stage and at earlier lineage than TLs in Trp53+/- mice. Monoclonal rearrangements at Tcrb were more prevalent in TLs from Trp53+/− Nucks1+/− mice, as was infiltration of primary TL cells to distant organs (liver, kidney and spleen). We propose that, in the context of Trp53 deficiency, wild type levels of Nucks1 are required to suppress radiation-induced TL, likely through the role of the NUCKS1 protein in the DNA damage response.
Collapse
|
5
|
Cherian MA, Olson S, Sundaramoorthi H, Cates K, Cheng X, Harding J, Martens A, Challen GA, Tyagi M, Ratner L, Rauch D. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 2018. [PMID: 29540473 DOI: 10.1074/jbc.ra117.000164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human T-cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, probably as a result of specific immunoediting, Tax expression is down-regulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL., K59R is the most common single-nucleotide variation of IRF4 and is found exclusively in ATL. High-throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T-cell receptor, CD28, and NF-κB pathways. We found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV-1-transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1-transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than WT IRF4 and is transcriptionally more active. Expression of both WT and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL because ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and overexpression of IRF4 induces the expansion of T lymphocytes in vivo.
Collapse
Affiliation(s)
- Mathew A Cherian
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sydney Olson
- the Department of Biology, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Hemalatha Sundaramoorthi
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kitra Cates
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Xiaogang Cheng
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Harding
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Andrew Martens
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Grant A Challen
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Manoj Tyagi
- the Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20892
| | - Lee Ratner
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110,
| | - Daniel Rauch
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
6
|
Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7969068. [PMID: 29619377 PMCID: PMC5830027 DOI: 10.1155/2018/7969068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is a 27 kD chromosomal, highly conserved, and vertebrate-specific protein. NUCKS1 gene encodes a nuclear protein and the conserved regions of NUCKS1 contain several consensus phosphorylation sites for casein kinase II (CK2) and cyclin-dependent kinases (Cdk) and a basic DNA-binding domain. NUCKS1 is similar to the high mobility group (HMG) family which dominates chromatin remodeling and regulates gene transcription. Meanwhile, NUCKS1 is a RAD51 associated protein 1 (RAD51AP1) paralog that is significant for homologous recombination (HR) and genome stability and also a transcriptional regulator of the insulin signaling components. NUCKS1 plays an important role in DNA damage response and metabolism, participates in inflammatory immune response, and correlates with microRNA. Although there is still not enough functional information on NUCKS1, evidences suggest that NUCKS1 can be used as the biomarker of several cancers. This review summarizes the latest research on NUCKS1 about its susceptibility in diseases, expression levels, and regulatory mechanisms as well as the possible functions in reference to diseases.
Collapse
|
7
|
Dierckx T, Khouri R, Menezes SM, Decanine D, Farre L, Bittencourt A, Vandamme AM, Van Weyenbergh J. IFN-β induces greater antiproliferative and proapoptotic effects and increased p53 signaling compared with IFN-α in PBMCs of Adult T-cell Leukemia/Lymphoma patients. Blood Cancer J 2017; 7:e519. [PMID: 28128792 PMCID: PMC5301034 DOI: 10.1038/bcj.2016.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- T Dierckx
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Khouri
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium.,Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| | - S M Menezes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - D Decanine
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| | - L Farre
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| | - A Bittencourt
- Hospital Universitário Professor Edgar Santos-UFBA, Salvador-BA, Brazil
| | - A M Vandamme
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - J Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium.,Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| |
Collapse
|
8
|
Driessen EM, Pinhanços SSM, Schneider P, de Lorenzo P, Valsecchi MG, Pieters R, Stam RW. Versican expression is an adverse prognostic factor in MLL-rearranged infant acute lymphoblastic leukaemia. Eur J Cancer 2016; 57:87-90. [DOI: 10.1016/j.ejca.2015.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/16/2022]
|
9
|
Fujii K, Karpova MB, Asagoe K, Georgiev O, Dummer R, Urosevic-Maiwald M. Versican upregulation in Sézary cells alters growth, motility and resistance to chemotherapy. Leukemia 2015; 29:2024-32. [DOI: 10.1038/leu.2015.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
|
10
|
Deutsch AJA, Rinner B, Wenzl K, Pichler M, Troppan K, Steinbauer E, Schwarzenbacher D, Reitter S, Feichtinger J, Tierling S, Prokesch A, Scheideler M, Krogsdam A, Thallinger GG, Schaider H, Beham-Schmid C, Neumeister P. NR4A1-mediated apoptosis suppresses lymphomagenesis and is associated with a favorable cancer-specific survival in patients with aggressive B-cell lymphomas. Blood 2014; 123:2367-77. [PMID: 24553175 DOI: 10.1182/blood-2013-08-518878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NR4A1 (Nur77) and NR4A3 (Nor-1) function as tumor suppressor genes as demonstrated by the rapid development of acute myeloid leukemia in the NR4A1 and NR4A3 knockout mouse. The aim of our study was to investigate NR4A1 and NR4A3 expression and function in lymphoid malignancies. We found a vastly reduced expression of NR4A1 and NR4A3 in chronic lymphocytic B-cell leukemia (71%), in follicular lymphoma (FL, 70%), and in diffuse large B-cell lymphoma (DLBCL, 74%). In aggressive lymphomas (DLBCL and FL grade 3), low NR4A1 expression was significantly associated with a non-germinal center B-cell subtype and with poor overall survival. To investigate the function of NR4A1 in lymphomas, we overexpressed NR4A1 in several lymphoma cell lines. Overexpression of NR4A1 led to a higher proportion of lymphoma cells undergoing apoptosis. To test the tumor suppressor function of NR4A1 in vivo, the stable lentiviral-transduced SuDHL4 lymphoma cell line harboring an inducible NR4A1 construct was further investigated in xenografts. Induction of NR4A1 abrogated tumor growth in the NSG mice, in contrast to vector controls, which formed massive tumors. Our data suggest that NR4A1 has proapoptotic functions in aggressive lymphoma cells and define NR4A1 as a novel gene with tumor suppressor properties involved in lymphomagenesis.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blotting, Western
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- Heterografts
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/mortality
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Proportional Hazards Models
- Receptors, Steroid/genetics
- Receptors, Thyroid Hormone/genetics
Collapse
|
11
|
Patel JL, Pournazari P, Haggstrom SJ, Kosari F, Shabani-Rad MT, Natkunam Y, Mansoor A. LMO2 (LIM domain only 2) is expressed in a subset of acute myeloid leukaemia and correlates with normal karyotype. Histopathology 2013; 64:226-33. [DOI: 10.1111/his.12242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Jay L Patel
- Department of Pathology and Laboratory Medicine; University of Calgary and Calgary Laboratory Services; Calgary AB Canada
| | - Payam Pournazari
- Department of Pathology and Laboratory Medicine; University of Calgary and Calgary Laboratory Services; Calgary AB Canada
| | - Sarah-Joy Haggstrom
- Department of Pathology and Laboratory Medicine; University of Calgary and Calgary Laboratory Services; Calgary AB Canada
| | - Farid Kosari
- Department of Pathology and Laboratory Medicine; University of Calgary and Calgary Laboratory Services; Calgary AB Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology and Laboratory Medicine; University of Calgary and Calgary Laboratory Services; Calgary AB Canada
| | - Yasodha Natkunam
- Department of Pathology; Stanford University School of Medicine; Stanford CA USA
| | - Adnan Mansoor
- Department of Pathology and Laboratory Medicine; University of Calgary and Calgary Laboratory Services; Calgary AB Canada
| |
Collapse
|
12
|
Fields PA, Taylor GP. "Antivirals" in the treatment of adult T cell leukaemia- lymphoma (ATLL). Curr Hematol Malig Rep 2013; 7:267-75. [PMID: 23093306 DOI: 10.1007/s11899-012-0139-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult T cell leukaemia / lymphoma (ATLL) is a mature (post thymic) T cell lymphoma caused by the human T-lymphotropic virus type 1 (HTLV-1) infection. Overall survival in the aggressive subtypes (Acute Leukaemia and Lymphomatous) remains poor in part due to chemotherapy resistance. To improve treatment outcome for de novo disease, better induction therapies are required and since the pathogenic agent is known it would seem sensible to target the virus. In a recent meta-analysis the use of zidovudine and interferon alpha (ZDV/IFN) has been associated with improved response rates and prolonged overall survival in leukemic subtypes of ATLL (both acute and Chronic) confirmed in a multivariate analysis. In a more recent UK study the overall response rate for patients with aggressive ATLL treated with chemotherapy alone was 49 % compared to 81 % with combined first line therapy (chemotherapy with concurrent or sequential ZDV/IFN). Combined first line therapy prolonged median OS in acute (p = 0.0081) and lymphomatous ATLL (p = 0.001).These data support the use of low dose ZDV/IFN with chemotherapy as first line treatment for patients with newly diagnosed aggressive ATLL. Although the mechanisms of action are incompletely understood, some possible explanations for their efficacy will be discussed.
Collapse
Affiliation(s)
- Paul A Fields
- Department of Haematology, Guys and St Thomas', Kings College Hospitals, London, SE1 9RT, UK.
| | | |
Collapse
|
13
|
Abstract
Gamma-(γ)-herpes virus lymphomas comprise a heterogenous group of B-cell and T-cell neoplasms most commonly associated with Epstein-Barr virus and rarely human herpes virus-8 infection. Adult T-cell leukemia/lymphoma (ATLL) is a unique disease entity caused by the human T-cell lymphotrophic virus, type 1 (HTLV-I), the only retrovirus known to cause cancer in humans. Viral lymphomas behave aggressively and disproportionally affect immunocompromised individuals and those living in underdeveloped regions. These diseases are often difficult to treat with conventional approaches. Despite recent advancements using cytotoxic, lymphoma-specific, and adoptive therapies, the long-term outcome of patients with γ-herpesvirus lymphomas occurring in severely immunocompromised patients and ATLL continues to be poor. Lytic-inducing therapies targeting NF-κB, and viral and tumor cell epigenetic mechanisms afford the advantage of exploiting the intrinsic presence of oncogenic viruses to eradicate infected tumor cells. In this review, viral-related lymphomas and newly emerging clinical approaches targeting viral latency are discussed.
Collapse
Affiliation(s)
- Juan Carlos Ramos
- Department of Medicine, Division of Oncology-Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Izidore S Lossos
- Department of Medicine, Division of Oncology-Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL
| |
Collapse
|
14
|
Abstract
Interferon regulatory factor 7 (IRF7) was originally identified in the context of Epstein-Barr virus (EBV) infection, and has since emerged as the crucial regulator of type I interferons (IFNs) against pathogenic infections, which activate IRF7 by triggering signaling cascades from pathogen recognition receptors (PRRs) that recognize pathogenic nucleic acids. Moreover, IRF7 is a multifunctional transcription factor, underscored by the fact that it is associated with EBV latency, in which IRF7 is induced as well as activated by the EBV principal oncoprotein latent membrane protein-1 (LMP1). Aberrant production of type I IFNs is associated with many types of diseases such as cancers and autoimmune disorders. Thus, tight regulation of IRF7 expression and activity is imperative in dictating appropriate type I IFN production for normal IFN-mediated physiological functions. Posttranslational modifications have important roles in regulation of IRF7 activity, exemplified by phosphorylation, which is indicative of its activation. Furthermore, mounting evidence has shed light on the importance of regulatory ubiquitination in activation of IRF7. Albeit these exciting findings have been made in the past decade since its discovery, many questions related to IRF7 remain to be addressed.
Collapse
|
15
|
Gertz MA, Tadmor T. Individualizing cancer therapy. Leuk Lymphoma 2010; 51:1585-7. [PMID: 20578822 DOI: 10.3109/10428194.2010.497125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Morie A Gertz
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
16
|
Hartmann EM, Rosenwald A. Gene expression signatures of adult T-cell leukemia: is treatment response prediction on the horizon? Leuk Lymphoma 2010; 51:1157-8. [PMID: 20388057 DOI: 10.3109/10428194.2010.481066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Elena M Hartmann
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|