1
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
2
|
Vu NT, Kim M, Stephenson DJ, MacKnight HP, Chalfant CE. Ceramide Kinase Inhibition Drives Ferroptosis and Sensitivity to Cisplatin in Mutant KRAS Lung Cancer by Dysregulating VDAC-Mediated Mitochondria Function. Mol Cancer Res 2022; 20:1429-1442. [PMID: 35560154 PMCID: PMC9444881 DOI: 10.1158/1541-7786.mcr-22-0085] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
Abstract
Ceramide kinase (CERK) is the mammalian lipid kinase from which the bioactive sphingolipid, ceramide-1-phosphate (C1P), is derived. CERK has been implicated in several promalignant phenotypes with little known as to mechanistic underpinnings. In this study, the mechanism of how CERK inhibition decreases cell survival in mutant (Mut) KRAS non-small cell lung cancer (NSCLC), a major lung cancer subtype, was revealed. Specifically, NSCLC cells possessing a KRAS mutation were more responsive to inhibition, downregulation, and genetic ablation of CERK compared with those with wild-type (WT) KRAS regarding a reduction in cell survival. Inhibition of CERK induced ferroptosis in Mut KRAS NSCLC cells, which required elevating VDAC-regulated mitochondria membrane potential (MMP) and the generation of cellular reactive oxygen species (ROS). Importantly, through modulation of VDAC, CERK inhibition synergized with the first-line NSCLC treatment, cisplatin, in reducing cell survival and in vivo tumor growth. Further mechanistic studies indicated that CERK inhibition affected MMP and cell survival by limiting AKT activation and translocation to mitochondria, and thus, blocking VDAC phosphorylation and tubulin recruitment. IMPLICATIONS Our findings depict how CERK inhibition may serve as a new key point in combination therapeutic strategy for NSCLC, specifically precision therapeutics targeting NSCLC possessing a KRAS mutation.
Collapse
Affiliation(s)
- Ngoc T. Vu
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Vietnam
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J. Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - H. Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA,Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903,Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903,Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, 22903,Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298,To whom correspondence should be addressed: Charles E. Chalfant, Professor, Department of Medicine, Division of Hematology & Oncology, P.O. Box 801398, University of Virginia, Charlottesville, VA, 22903, or
| |
Collapse
|
3
|
Verlekar D, Wei SJ, Cho H, Yang S, Kang MH. Ceramide synthase-6 confers resistance to chemotherapy by binding to CD95/Fas in T-cell acute lymphoblastic leukemia. Cell Death Dis 2018; 9:925. [PMID: 30206207 PMCID: PMC6133972 DOI: 10.1038/s41419-018-0964-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
Ceramide synthases (CERS) produce ceramides which are key intermediators in the biosynthesis of complex sphingolipids and play an important role in cell proliferation, differentiation, apoptosis and senescence. CERS6 is an isoform of ceramide synthases known to generate ceramides with C16 acyl chain (C16-Cer). CERS6 and C16-Cer levels were significantly higher in acute lymphoblastic leukemia (ALL) cells in comparison to peripheral blood mononuclear cells and T lymphocytes derived from healthy human volunteers. We investigated the role of CERS6 in chemo-resistance in T-ALL cell lines. Stable knockdown of CERS6 in CCRF-CEM and MOLT-4 cells resulted in increased sensitivity to ABT-737, a pan-BCL-2 inhibitor, while CCRF-CEM cells with exogenous CERS6 expression showed resistance to ABT-737 relative to the vector control. The cytotoxic activity of ABT-737 in CERS6 knockdown cells was significantly reduced by the addition of a caspase-8 inhibitor Z-IETD, suggesting that CERS6 alters the cytotoxicity via extrinsic pathway of apoptosis. By co-immunoprecipitation of CERS6 in CCRF-CEM cells, we identified CD95/Fas, a mediator of extrinsic apoptotic pathway, as a novel CERS6 binding partner. In Fas pull-down samples, FADD (Fas-associated protein with death domain) was detected at higher levels in cells with CERS6 knockdown compared with control cells when treated with ABT-737, and this was reversed by the overexpression of CERS6, demonstrating that CERS6 interferes with Fas–FADD DISC assembly. CERS6 may serve as a biomarker in determining the effectiveness of anticancer agents acting via the extrinsic pathway in T-ALL.
Collapse
Affiliation(s)
- Dattesh Verlekar
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.,Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sung-Jen Wei
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Hwangeui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Shengping Yang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.,Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA. .,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA. .,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
4
|
Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discov 2018; 4:72. [PMID: 30062053 PMCID: PMC6060109 DOI: 10.1038/s41420-018-0075-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Conventional chemotherapy-based drug combinations have, until recently, been the backbone of most therapeutic strategies for cancer. In a time of emerging rationale drug development, targeted therapies are beginning to be added to traditional chemotherapeutics to synergistically enhance clinical responses. Of note, the importance of pro-apoptotic ceramide in mediating the anti-cancer effects of these therapies is becoming more apparent. Furthermore, reduced cellular ceramide in favour of pro-survival sphingolipids correlates with tumorigenesis and most importantly, drug resistance. Thus, agents that manipulate sphingolipid metabolism have been explored as potential anti-cancer agents and have recently demonstrated exciting potential to augment the efficacy of anti-cancer therapeutics. This review examines the biology underpinning these observations and the potential use of sphingolipid manipulating agents in the context of existing and emerging therapies for haematological malignancies. • Efficacy of many chemotherapeutics and targeted therapies is dictated by cellular ceramide levels. • Oncogene activation skews sphingolipid metabolism to favour the production of pro-survival sphingolipids. • Inhibitors of enzymes involved in ceramide metabolism exhibit promise in the relapsed-refractory setting. • Anti-cancer activity of sphingosine kinase inhibitors provides several options for new drug combinations. Open Questions • What other clinically utilised drugs rely on increases in ceramide levels for their efficacy and can they be effectively partnered with other ceramide inducing agents? • How does ceramide modulate the Bcl-2 family proteins, Mcl-1 and Bcl-2? • Are sphingolipid enzyme inhibitors best suited in the frontline or relapsed-refractory setting?
Collapse
|
5
|
Wegner MS, Schiffmann S, Parnham MJ, Geisslinger G, Grösch S. The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res 2016; 63:93-119. [PMID: 27180613 DOI: 10.1016/j.plipres.2016.03.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 12/20/2022]
Abstract
Ceramide synthases (CerS) are key enzymes in the lipid metabolism of eukaryotic cells. Their products, ceramides (Cer), are components of cellular membranes but also mediate signaling functions in physiological processes such as proliferation, skin barrier function and cerebellar development. In pathophysiological processes such as multiple sclerosis and tumor progression, ceramide levels are altered, which can be ascribed, partly, to dysregulation of CerS gene transcription. Most publications deal with the effects of altered ceramide levels on physiological and pathophysiological processes, but the regulation of the appropriate CerS is frequently not investigated. This is insufficient for the clarification of the role of ceramides, because most ceramide species are generated by at least two CerS. The mechanisms of CerS regulation are manifold and it seems that each CerS isoform is regulated individually. For this reason, we discuss the different CerS separately in this review. From transcriptional regulation to alteration of protein activity, the possibilities to influence CerS are diverse. Furthermore, CerS are influenced by a variety of molecules including hormones and lipids. Without claiming completeness, we provide a résumé of the regulatory mechanisms for each CerS in mammalian cells and how dysregulation of these mechanisms during physiological processes may lead to pathophysiological processes.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Michael John Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann- Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016; 37:8471-86. [PMID: 27059734 DOI: 10.1007/s13277-016-5035-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Collapse
|
7
|
Kitatani K, Taniguchi M, Okazaki T. Role of Sphingolipids and Metabolizing Enzymes in Hematological Malignancies. Mol Cells 2015; 38:482-95. [PMID: 25997737 PMCID: PMC4469906 DOI: 10.14348/molcells.2015.0118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1-phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal bio-modulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Kazuyuki Kitatani
- Tohoku Medical Megabank Organization, Sendai,
Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai,
Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
| | - Toshiro Okazaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
- Department of Medicine, Division of Hematology/Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
| |
Collapse
|
8
|
Payne AW, Pant DK, Pan TC, Chodosh LA. Ceramide kinase promotes tumor cell survival and mammary tumor recurrence. Cancer Res 2014; 74:6352-63. [PMID: 25164007 DOI: 10.1158/0008-5472.can-14-1292] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recurrent breast cancer is typically an incurable disease and, as such, is disproportionately responsible for deaths from this disease. Recurrent breast cancers arise from the pool of disseminated tumor cells (DTC) that survive adjuvant or neoadjuvant therapy, and patients with detectable DTCs following therapy are at substantially increased risk for recurrence. Consequently, the identification of pathways that contribute to the survival of breast cancer cells following therapy could aid in the development of more effective therapies that decrease the burden of residual disease and thereby reduce the risk of breast cancer recurrence. We now report that ceramide kinase (Cerk) is required for mammary tumor recurrence following HER2/neu pathway inhibition and is spontaneously upregulated during tumor recurrence in multiple genetically engineered mouse models for breast cancer. We find that Cerk is rapidly upregulated in tumor cells following HER2/neu downregulation or treatment with Adriamycin and that Cerk is required for tumor cell survival following HER2/neu downregulation. Consistent with our observations in mouse models, analysis of gene expression profiles from more than 2,200 patients revealed that elevated CERK expression is associated with an increased risk of recurrence in women with breast cancer. In addition, although CERK expression is associated with aggressive subtypes of breast cancer, including those that are estrogen receptor-negative, HER2(+), basal-like, or high grade, its association with poor clinical outcome is independent of these clinicopathologic variables. Together, our findings identify a functional role for Cerk in breast cancer recurrence and suggest the clinical utility of agents targeted against this prosurvival pathway.
Collapse
Affiliation(s)
- Ania W Payne
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dhruv K Pant
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Abstract
Non-surgical therapies for human malignancies must negotiate complex cell signaling pathways to impede cancer cell growth, ideally promoting death of cancer cells while sparing healthy tissue. For most of the past half century, medical approaches for treating cancer have relied primarily on cytotoxic chemotherapeutics that interfere with DNA replication and cell division, susceptibilities of rapidly dividing cancer cells. As a consequence, these therapies exert considerable cell stress, promoting the generation of ceramide through de novo synthesis and recycling of complex glycosphingolipids and sphingomyelin into apoptotic ceramide. Radiotherapy of cancer exerts similar geno- and cytotoxic cell stresses, and generation of ceramide following ionizing radiation therapy is a well-described feature of radiation-induced cell death. Emerging evidence now describes sphingolipids as mediators of death in response to newer targeted therapies, cementing ceramide generation as a common mechanism of cell death in response to cancer therapy. Many studies have now shown that dysregulation of ceramide accumulation-whether by reduced generation or accelerated metabolism-is a common mechanism of resistance to standard cancer therapies. The aims of this chapter will be to discuss described mechanisms of cancer resistance to therapy related to dysregulation of sphingolipid metabolism and to explore clinical and preclinical approaches to interdict sphingolipid metabolism to improve outcomes of standard cancer therapies.
Collapse
|
10
|
Hage-Sleiman R, Esmerian MO, Kobeissy H, Dbaibo G. p53 and Ceramide as Collaborators in the Stress Response. Int J Mol Sci 2013; 14:4982-5012. [PMID: 23455468 PMCID: PMC3634419 DOI: 10.3390/ijms14034982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023] Open
Abstract
The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this "tumor suppressor lipid", ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +961-1-350-000 (ext. 4883)
| | - Maria O. Esmerian
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Hadile Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| |
Collapse
|
11
|
Inhibition of ceramide metabolism sensitizes human leukemia cells to inhibition of BCL2-like proteins. PLoS One 2013; 8:e54525. [PMID: 23342165 PMCID: PMC3546986 DOI: 10.1371/journal.pone.0054525] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/12/2012] [Indexed: 01/29/2023] Open
Abstract
The identification of novel combinations of effective cancer drugs is required for the successful treatment of cancer patients for a number of reasons. First, many “cancer specific” therapeutics display detrimental patient side-effects and second, there are almost no examples of single agent therapeutics that lead to cures. One strategy to decrease both the effective dose of individual drugs and the potential for therapeutic resistance is to combine drugs that regulate independent pathways that converge on cell death. BCL2-like family members are key proteins that regulate apoptosis. We conducted a screen to identify drugs that could be combined with an inhibitor of anti-apoptotic BCL2-like proteins, ABT-263, to kill human leukemia cells lines. We found that the combination of D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) hydrochloride, an inhibitor of glucosylceramide synthase, potently synergized with ABT-263 in the killing of multiple human leukemia cell lines. Treatment of cells with PDMP and ABT-263 led to dramatic elevation of two pro-apoptotic sphingolipids, namely ceramide and sphingosine. Furthermore, treatment of cells with the sphingosine kinase inhibitor, SKi-II, also dramatically synergized with ABT-263 to kill leukemia cells and similarly increased ceramides and sphingosine. Data suggest that synergism with ABT-263 requires accumulation of ceramides and sphingosine, as AMP-deoxynojirimycin, (an inhibitor of the glycosphingolipid pathway) did not elevate ceramides or sphingosine and importantly did not sensitize cells to ABT-263 treatment. Taken together, our data suggest that combining inhibitors of anti-apoptotic BCL2-like proteins with drugs that alter the balance of bioactive sphingolipids will be a powerful combination for the treatment of human cancers.
Collapse
|
12
|
Kartal Yandım M, Apohan E, Baran Y. Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer. Cancer Chemother Pharmacol 2012; 71:13-20. [PMID: 23073611 DOI: 10.1007/s00280-012-1984-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/17/2012] [Indexed: 12/25/2022]
Abstract
Sphingolipids including ceramides and its derivatives such as ceramide-1-phosphate, glucosylceramide (GlcCer), and sphingosine-1-phosphate are essential structural components of cell membranes. They now recognized as novel bioeffector molecules which control various aspects of cell growth, proliferation, apoptosis, and drug resistance. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. There are two major classes of sphingolipids. One of them is glycosphingolipids which are synthesized from the hydrophobic molecule, ceramide. GlcCer, generated by glucosylceramide synthase (GCS) that transfers the glucose from UDP-glucose to ceramide, is an important glycosphingolipid metabolic intermediate. GCS regulates the balance between apoptotic ceramide and antiapoptotic GlcCer. Downregulation or inhibition of GCS results in increased apoptosis and decreased drug resistance. The mechanism underlying the drug resistance which develops with increased glucosylceramide expression is associated with P-glycoprotein. In various types of cancers, overexpression of GCS has been observed which renders GCS a good target for the treatment of cancer. This review summarizes our current knowledge on the structure and functions of glucosylceramide synthase and glucosylceramide and on the roles of glucosylceramide synthase in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Melis Kartal Yandım
- Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, Urla, Izmir 35430, Turkey
| | | | | |
Collapse
|