1
|
Mora A, Bosch R, Cuellar C, Vicente EP, Blanco L, Martino R, Ubeda JM, Sierra J, Moreno C, Nomdedeu J. CD200 is a useful marker in the diagnosis of chronic lymphocytic leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2018; 96:143-148. [DOI: 10.1002/cyto.b.21722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/25/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Alba Mora
- Laboratory of Oncology/Hematology and TransplantationInstitute of Biomedical Research Barcelona Spain
- Department of Hematology, Hospital de la Santa Creu i Sant PauAutonomous University of Barcelona Spain
- Department of MedicineAutonomous University of Barcelona Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) and José Carreras Leukemia Research Institute
| | - Rosa Bosch
- Laboratory of Oncology/Hematology and TransplantationInstitute of Biomedical Research Barcelona Spain
- Department of Hematology, Hospital de la Santa Creu i Sant PauAutonomous University of Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) and José Carreras Leukemia Research Institute
| | - Carolina Cuellar
- Laboratory of Oncology/Hematology and TransplantationInstitute of Biomedical Research Barcelona Spain
- Department of Hematology, Hospital de la Santa Creu i Sant PauAutonomous University of Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) and José Carreras Leukemia Research Institute
| | - Eva Puy Vicente
- Laboratory of Oncology/Hematology and TransplantationInstitute of Biomedical Research Barcelona Spain
- Department of Hematology, Hospital de la Santa Creu i Sant PauAutonomous University of Barcelona Spain
| | - Laura Blanco
- Laboratory of HematologyHospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Rodrigo Martino
- Department of Hematology, Hospital de la Santa Creu i Sant PauAutonomous University of Barcelona Spain
| | - José M. Ubeda
- Laboratory of HematologyHospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Jorge Sierra
- Laboratory of Oncology/Hematology and TransplantationInstitute of Biomedical Research Barcelona Spain
- Department of Hematology, Hospital de la Santa Creu i Sant PauAutonomous University of Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) and José Carreras Leukemia Research Institute
| | - Carol Moreno
- Laboratory of Oncology/Hematology and TransplantationInstitute of Biomedical Research Barcelona Spain
- Department of Hematology, Hospital de la Santa Creu i Sant PauAutonomous University of Barcelona Spain
- Department of MedicineAutonomous University of Barcelona Barcelona Spain
- Biomedical Research Institute (IIB‐Sant Pau) and José Carreras Leukemia Research Institute
| | - Josep Nomdedeu
- Laboratory of HematologyHospital de la Santa Creu i Sant Pau Barcelona Spain
| |
Collapse
|
2
|
Thurgood LA, Chataway TK, Lower KM, Kuss BJ. From genome to proteome: Looking beyond DNA and RNA in chronic lymphocytic leukemia. J Proteomics 2017; 155:73-84. [PMID: 28069558 DOI: 10.1016/j.jprot.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) remains the most common leukemia in the Western world. Whilst its disease course is extremely heterogeneous (ranging from indolent to aggressive), current methods are unable to accurately predict the clinical journey of each patient. There is clearly a pressing need for both improved prognostication and treatment options for patients with this disease. Whilst molecular studies have analyzed both genetic mutations and gene expression profiles of these malignant B-cells, and as a result have shed light on the pathogenesis of CLL, proteomic studies have been largely overlooked to date. This review summarizes our current knowledge of the proteomics of CLL, and discusses some of the issues in CLL proteomic research, such as reproducibility and data interpretation. In addition, we look ahead to how proteomics may significantly help in the development of a successful treatment for this currently incurable disease.
Collapse
Affiliation(s)
- Lauren A Thurgood
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia.
| | - Tim K Chataway
- Department of Physiology, Flinders University, Adelaide, South Australia, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia
| | - Bryone J Kuss
- Department of Haematology and Genetic Pathology, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Lakowski J, Gonzalez-Cordero A, West EL, Han YT, Welby E, Naeem A, Blackford SJI, Bainbridge JWB, Pearson RA, Ali RR, Sowden JC. Transplantation of Photoreceptor Precursors Isolated via a Cell Surface Biomarker Panel From Embryonic Stem Cell-Derived Self-Forming Retina. Stem Cells 2015; 33:2469-82. [PMID: 25982268 PMCID: PMC4862023 DOI: 10.1002/stem.2051] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/21/2015] [Indexed: 10/25/2022]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of untreatable blindness. Cell replacement therapy, using pluripotent stem cell-derived photoreceptor cells, may be a feasible future treatment. Achieving safe and effective cell replacement is critically dependent on the stringent selection and purification of optimal cells for transplantation. Previously, we demonstrated effective transplantation of post-mitotic photoreceptor precursor cells labelled by fluorescent reporter genes. As genetically labelled cells are not desirable for therapy, here we developed a surface biomarker cell selection strategy for application to complex pluripotent stem cell differentiation cultures. We show that a five cell surface biomarker panel CD73(+)CD24(+)CD133(+)CD47(+)CD15(-) facilitates the isolation of photoreceptor precursors from three-dimensional self-forming retina differentiated from mouse embryonic stem cells. Importantly, stem cell-derived cells isolated using the biomarker panel successfully integrate and mature into new rod photoreceptors in the adult mouse retinae after subretinal transplantation. Conversely, unsorted or negatively selected cells do not give rise to newly integrated rods after transplantation. The biomarker panel also removes detrimental proliferating cells prior to transplantation. Notably, we demonstrate how expression of the biomarker panel is conserved in the human retina and propose that a similar selection strategy will facilitate isolation of human transplantation-competent cells for therapeutic application.
Collapse
Affiliation(s)
- Jorn Lakowski
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| | | | - Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ya-Ting Han
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| | - Emily Welby
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| | - Arifa Naeem
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | - Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
4
|
Schröder C, Srinivasan H, Sill M, Linseisen J, Fellenberg K, Becker N, Nieters A, Hoheisel JD. Plasma protein analysis of patients with different B-cell lymphomas using high-content antibody microarrays. Proteomics Clin Appl 2014; 7:802-12. [PMID: 24323458 DOI: 10.1002/prca.201300048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/09/2022]
Abstract
PURPOSE In this study, plasma samples from a multicentric case-control study on lymphoma were analyzed for the identification of proteins useful for diagnosis. EXPERIMENTAL DESIGN The protein content in the plasma of 100 patients suffering from the three most common B-cell lymphomas and 100 control samples was studied with antibody microarrays composed of 810 antibodies that target cancer-associated proteins. Sample pools were screened for an identification of marker proteins. Then, the samples were analyzed individually to validate the usability of these markers. RESULTS More than 200 proteins with disease-associated abundance changes were found. The evaluation on individual patients confirmed some molecules as robust informative markers while others were inadequate for this purpose. In addition, the analysis revealed distinct subgroups for each of the three investigated B-cell lymphoma subtypes. With this information, we delineated a classifier that discriminates the different lymphoma entities. CONCLUSIONS AND CLINICAL RELEVANCE Variations in plasma protein abundance permit discrimination between different patient groups. After validation on a larger study cohort, the findings could have diagnostic as well as differential diagnostic potential. Beside this, methodological aspects were critically evaluated, such as the value of sample pooling for the identification of biomarkers that are useful for a diagnosis on individual patients.
Collapse
Affiliation(s)
- Christoph Schröder
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Perbellini O, Falisi E, Giaretta I, Boscaro E, Novella E, Facco M, Fortuna S, Finotto S, Amati E, Maniscalco F, Montaldi A, Alghisi A, Aprili F, Bonaldi L, Paolini R, Scupoli MT, Trentin L, Ambrosetti A, Semenzato G, Pizzolo G, Rodeghiero F, Visco C. Clinical significance of LAIR1 (CD305) as assessed by flow cytometry in a prospective series of patients with chronic lymphocytic leukemia. Haematologica 2014; 99:881-7. [PMID: 24415628 PMCID: PMC4008102 DOI: 10.3324/haematol.2013.096362] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/08/2014] [Indexed: 01/30/2023] Open
Abstract
Most patients affected by chronic lymphocytic leukemia are diagnosed by flow cytometry. Several immunophenotypic markers have been identified as significant and independent prognostic variables, especially from retrospective cohorts. However, while attractive because their detection is inexpensive and feasible in most laboratories, only few have been validated by independent series. The expression of leukocyte-associated immunoglobulin-like receptor-1 (also known as LAIR1, LAIR-1 or CD305), an inhibitor of B-cell receptor-mediated signaling, has been reported to be lacking in high-risk chronic lymphocytic leukemia. However, its correlation with biological variables and its prognostic significance remain unknown. We investigated 311 consecutive patients, prospectively enrolled since 2007. Methods for studying patients were standardized and included clinical assessment, immunophenotype, fluorescence in situ hybridization, and status of immunoglobulin heavy chain variable region genes. Overall, 22.1% of patients had Binet stage B or C disease, 38.5% had unmutated immunoglobulin genes, 15.1% had high-risk cytogenetic abnormalities, 23.4% were CD38(+), 37.8% CD49d(+), and 59.8% LAIR1(+). Expression of LAIR1 was inversely related to that of CD38 (P=0.0005), but was not associated with CD49d expression (P=0.96). A significantly lower expression of LAIR1 was observed in patients with Binet stage B or C disease (P=0.023), and in the presence of high-risk cytogenetic abnormalities (P=0.048) or unmutated immunoglobulin heavy chain variable region genes (P<0.0001). At univariate analysis LAIR1(+) was significantly associated with longer time to first treatment (P=0.0002). This favorable effect of LAIR1(+) was confirmed by multivariate analysis (hazard ratio=2.1, P=0.03 for LAIR1). Our results indicate that LAIR1 expression is a reliable and inexpensive marker capable of independently predicting time to first treatment in newly diagnosed unselected patients with chronic lymphocytic leukemia.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Chromosome Aberrations
- Disease Progression
- Female
- Flow Cytometry
- Follow-Up Studies
- Gene Expression
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Mutation
- Neoplasm Staging
- Patient Outcome Assessment
- Prognosis
- Prospective Studies
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
|
6
|
Huang PY, Best OG, Almazi JG, Belov L, Davis ZA, Majid A, Dyer MJ, Pascovici D, Mulligan SP, Christopherson RI. Cell surface phenotype profiles distinguish stable and progressive chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:2085-92. [DOI: 10.3109/10428194.2013.867486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Current status of biomarkers for prostate cancer. Int J Mol Sci 2013; 14:11034-60. [PMID: 23708103 PMCID: PMC3709717 DOI: 10.3390/ijms140611034] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death of men globally. Since its introduction, there has been intense debate as to the effectiveness of the prostate specific antigen (PSA) test as a screening tool for PCa. It is now evident that the PSA test produces unacceptably high rates of false positive results and is not prognostic. Here we review the current status of molecular biomarkers that promise to be prognostic and that might inform individual patient management. It highlights current efforts to identify biomarkers obtained by minimally invasive methods and discusses current knowledge with regard to gene fusions, mRNA and microRNAs, immunology, and cancer-associated microparticles.
Collapse
|
8
|
Park S, Moon HS, Lee DS, Kim HC, Chun H. High-throughput on-chip leukemia diagnosis. Int J Lab Hematol 2013; 35:480-90. [PMID: 23414350 DOI: 10.1111/ijlh.12054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/18/2012] [Indexed: 01/04/2023]
Abstract
Advances in lab-on-a-chip technologies enabled programmable, reconfigurable, and scalable manipulation of a variety of laboratory procedures. Samples, reagents, and fluids can be precisely controlled; buffer temperature, pH, and concentration control systems as well as a variety of detection systems can be integrated on a small chip. These advantages have attracted attention in various fields of clinical application including leukemia diagnosis and research. A lot of research on lab-on-a-chip based diagnosis has been reported and the field is rapidly expanding. This review describes recent developments of lab-on-a-chip technologies as solutions to challenges for high-throughput leukemia diagnosis.
Collapse
Affiliation(s)
- S Park
- Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|