1
|
Ropio J, Prochazkova-Carlotti M, Batista R, Pestana A, Chebly A, Ferrer J, Idrissi Y, Cappellen D, Durães C, Boaventura P, Vinagre J, Azzi-Martin L, Poglio S, Cabeçadas J, Campos MA, Beylot-Barry M, Sobrinho-Simões M, Merlio JP, Soares P, Chevret E. Spotlight on hTERT Complex Regulation in Cutaneous T-Cell Lymphomas. Genes (Basel) 2023; 14:439. [PMID: 36833366 PMCID: PMC9956048 DOI: 10.3390/genes14020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
As a major cancer hallmark, there is a sustained interest in understanding the telomerase contribution to carcinogenesis in order to therapeutically target this enzyme. This is particularly relevant in primary cutaneous T-cell lymphomas (CTCL), a malignancy showing telomerase dysregulation with few investigative data available. In CTCL, we examined the mechanisms involved in telomerase transcriptional activation and activity regulation. We analyzed 94 CTCL patients from a Franco-Portuguese cohort, as well as 8 cell lines, in comparison to 101 healthy controls. Our results showed that not only polymorphisms (SNPs) located at the promoter of human telomerase reverse transcriptase (hTERT) gene (rs2735940 and rs2853672) but also an SNP located within the coding region (rs2853676) could influence CTCL occurrence. Furthermore, our results sustained that the post-transcriptional regulation of hTERT contributes to CTCL lymphomagenesis. Indeed, CTCL cells present a different pattern of hTERT spliced transcripts distribution from the controls, mostly marked by an increase in the hTERT β+ variants proportion. This increase seems to be associated with CTCL development and progression. Through hTERT splicing transcriptome modulation with shRNAs, we observed that the decrease in the α-β+ transcript induced a decrease in the cell proliferation and tumorigenic capacities of T-MF cells in vitro. Taken together, our data highlight the major role of post-transcriptional mechanisms regulating telomerase non canonical functions in CTCL and suggest a new potential role for the α-β+ hTERT transcript variant.
Collapse
Affiliation(s)
- Joana Ropio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Institute of Biomedical Sciences of Abel Salazar, Porto University, 4050-313 Porto, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | | | - Rui Batista
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Ana Pestana
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Alain Chebly
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut 1104 2020, Lebanon
| | - Jacky Ferrer
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Yamina Idrissi
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - David Cappellen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Tumor Bank and Tumor Biology Laboratory, Bordeaux University Hospital, 33075 Bordeaux, France
| | - Cecília Durães
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
| | - Paula Boaventura
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
| | - João Vinagre
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
| | - Lamia Azzi-Martin
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- UFR des Sciences Médicales, Bordeaux University, 33076 Bordeaux, France
| | - Sandrine Poglio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - José Cabeçadas
- Dermatology Departement, Instituto Português de Oncologia de Lisboa (IPO-L), 1099-023 Lisbon, Portugal
| | - Manuel António Campos
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Centro Hospitalar Vila Nova de Gaia/Espinho, E.P.E., Dermatology Departement, 4434-502 Vila Nova de Gaia, Portugal
| | - Marie Beylot-Barry
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Dermatology Department, Bordeaux University Hospital, 33075 Bordeaux, France
| | - Manuel Sobrinho-Simões
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Jean-Philippe Merlio
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
- Tumor Bank and Tumor Biology Laboratory, Bordeaux University Hospital, 33075 Bordeaux, France
| | - Paula Soares
- Institute for Research and Innovation in Health (I3S), Porto University, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Cancer Biology Group, Porto University, 4200-465 Porto, Portugal
- Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, Porto University, 4200-319 Porto, Portugal
| | - Edith Chevret
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
2
|
Tripon F, Bănescu C, Trifa AP, Crauciuc AG, Moldovan VG, Boglis A, Benedek I, Demian S, Duicu C, Iancu M. TERT rs2853669 as a predictor for overall survival in patients with acute myeloid leukaemia. Arch Med Sci 2022; 18:103-111. [PMID: 35154531 PMCID: PMC8826982 DOI: 10.5114/aoms/100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/12/2018] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION the aim of the study was to investigate the contribution of TERT rs2736100 and rs2853669 gene polymorphisms in defining the genetic predisposition to acute myeloid leukaemia (AML), their association with different prognostic markers, and their impact on survival, outcome, and the prognosis of affected patients. Also, we investigated the association of TERT SNPs in AML in the presence or absence of DNMT3A (R882), NPM1, and FLT3 mutations. MATERIAL AND METHODS A total of 509 participants were enrolled in our study, consisting of 146 AML patients and 363 healthy participants, with no history of malignancy. TERT rs2736100 and rs2853669 polymorphisms were genotyped by using TaqMan SNP genotyping assay FLT3 (ITD, D835), DNMT3A (R882), and NPM1 c.863_864insTCTG (type A) mutations were analised in each AML case. RESULTS TERT rs2736100 and rs2853669 were not associated with AML risk in the codominant, dominant, recessive, or allelic models. Multivariate Cox regression showed that TERT rs2853669 was a significant predictor for overall survival in AML patients. After adjusting for age, gender, cytogenetic risk group, ECOG status, FLT3, DNMT3A, NPM1 mutation, AML subtype, and treatment, the estimated adjusted hazard ratio (HR adjusted = 1.54, 95% CI: 1.01-2.35) showed that the TERT rs2853669 variant genotype had a negative influence on survival time. CONCLUSIONS TERT rs2853669 and rs2736100 polymorphisms were not risk factors for developing AML in the Romanian population, but the TERT rs2853669 variant genotype had a negative effect on AML patients' overall survival in the presence of other known prognostic factors.
Collapse
Affiliation(s)
- Florin Tripon
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Claudia Bănescu
- Genetics Laboratory, Centre for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Adrian P. Trifa
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei G. Crauciuc
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Valeriu G. Moldovan
- Genetics Laboratory, Centre for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Alina Boglis
- Department of Medical Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Istvan Benedek
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Smaranda Demian
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Carmen Duicu
- Department of Clinical Science, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Romania
| | - Mihaela Iancu
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
de Oliveira Lisboa M, Brofman PRS, Schmid-Braz AT, Rangel-Pozzo A, Mai S. Chromosomal Instability in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13112655. [PMID: 34071283 PMCID: PMC8198625 DOI: 10.3390/cancers13112655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Ana Teresa Schmid-Braz
- Hospital das Clínicas, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| |
Collapse
|
4
|
Bi L, Ma T, Li X, Wei L, Liu Z, Feng B, Dong B, Chen X. New progress in the study of germline susceptibility genes of myeloid neoplasms. Oncol Lett 2021; 21:317. [PMID: 33692849 PMCID: PMC7933751 DOI: 10.3892/ol.2021.12578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
In 2016, the World Health Organization incorporated ‘myeloid neoplasms with germline predisposition’ into its classification of tumors of hematopoietic and lymphoid tissues, revealing the important role of germline mutations in certain myeloid neoplasms, particularly myelodysplastic syndrome and acute myeloid leukemia. The awareness of germline susceptibility has increased, and some patients with myeloid neoplasms present with a preexisting disorder or organ dysfunction. In such cases, mutations in genes including CCAAT enhancer binding protein α (CEBPA), DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), RUNX family transcription factor 1 (RUNX1), GATA binding protein 2 (GATA2), Janus kinase 2 (JAK2) and ETS variant transcription factor 6 (ETV6) have been recognized. Moreover, with the application of advanced technologies and reports of more cases, additional germline mutations associated with myeloid neoplasms have been identified and provide insights into the formation, prognosis and therapy of myeloid neoplasms. The present review discusses the well-known CEBPA, DDX41, RUNX1, GATA2, JAK2 and ETV6 germline mutations, and other mutations including those of lymphocyte adapter protein/SH2B adapter protein 3 and duplications of autophagy related 2B, GSK3B interacting protein αnd RB binding protein 6, ubiquitin ligase, that remain to be confirmed or explored. Recommendations for the management of diseases associated with germline mutations are also provided.
Collapse
Affiliation(s)
- Lei Bi
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianyuan Ma
- Department of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Li
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lai Wei
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zinuo Liu
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bingyue Feng
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Baoxia Dong
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Hematology and Oncology Center, Affiliated Hospital of Northwest University and Xian No. 3 Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
5
|
Abdelrahman AH, Eid MM, Hassan M, Eid OM, AbdelKader RMA, AlAzhary NM, Shahin RY, Sallam MT. Telomerase reverse transcriptase gene amplification in hematological malignancies. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Telomere is a complex DNA–protein structure located at the end of all eukaryotic chromosomes. The major role of human telomerase is to catalyze the addition of telomeric repeat sequences TTAGGG onto chromosome ends for stabilization of telomere length in attaining cellular immortality and may therefore be a critical step in carcinogenesis. Expression of significant levels of telomerase can dramatically increase proliferative life span and promote cellular immortality, thereby contributing to the malignant phenotype. The purpose of this study is to investigate telomerase reverse transcriptase (TERT) gene amplification in hematological neoplasms, e.g., multiple myeloma (MM), B-non-Hodgkin lymphoma (B-NHL), and acute myeloid leukemia (AML), using FISH technique and to evaluate its potential use as a prognostic marker.
Results
TERT amplification was detected in all groups of the participant patients (15 MM, 15 B-NHL, and 15 AML patients), with higher incidence in AML patients (53.3%). A significant association between the pattern of presentation and telomerase amplification was detected in 88.9% of the relapsed patients who demonstrated amplification of TERT. TERT amplification shows a significant association with p53 deletion and a highly significant association with poor prognosis.
Conclusions
TERT gene amplification is significantly associated with hematological malignancies and may play a critical role in carcinogenesis; thus, elucidation of their regulatory mechanism is highly demanding. Higher amplification was found in relapsed cases than de novo cases which highlight its potential implication in clinical analysis and disease monitoring. Moreover, our results suggest the future use of TERT gene as a potential prognostic marker that may aid in treatment decision and chemotherapy.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The activation of telomere maintenance pathways has long been regarded as a key hallmark of cancer and this has propelled the development of novel inhibitors of telomerase. In this review, we detail the background biology on telomere maintenance in health and disease, then concentrate on the recent preclinical and clinical development behind targeting telomerase in blood cancers. RECENT FINDINGS Preclinical and clinical studies have shown that imetelstat, a competitive inhibitor of telomerase, has activity in certain hematologic malignancies, in particular the myeloproliferative neoplasms and acute myeloid leukemia. SUMMARY Telomerase inhibition has shown remarkable efficacy in myeloid malignancies, and current and future preclinical and clinical studies are necessary to comprehensively investigate its underlying mechanism of action. Future work should identify the potential genetic susceptibilities to telomerase inhibition therapy, and evaluate rational combinations of telomerase inhibitors with chemotherapy and other novel agents. Robust preclinical evaluation is essential to best translate these new agents successfully into our clinical treatment algorithm for myeloid and other blood cancers.
Collapse
|
7
|
Ropio J, Merlio JP, Soares P, Chevret E. Telomerase Activation in Hematological Malignancies. Genes (Basel) 2016; 7:genes7090061. [PMID: 27618103 PMCID: PMC5039560 DOI: 10.3390/genes7090061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Telomerase expression and telomere maintenance are critical for cell proliferation and survival, and they play important roles in development and cancer, including hematological malignancies. Transcriptional regulation of the rate-limiting subunit of human telomerase reverse transcriptase gen (hTERT) is a complex process, and unveiling the mechanisms behind its reactivation is an important step for the development of diagnostic and therapeutic applications. Here, we review the main mechanisms of telomerase activation and the associated hematologic malignancies.
Collapse
Affiliation(s)
- Joana Ropio
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
- Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto 4050-313, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup)-Cancer Biology, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Jean-Philippe Merlio
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
- Tumor Bank and Tumor Biology Laboratory, University Hospital Center Bordeaux, Pessac 33604, France.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup)-Cancer Biology, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- Department of Pathology and Oncology, Medical Faculty of Porto University, Porto 4200-319, Portugal.
| | - Edith Chevret
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
| |
Collapse
|
8
|
Xu X, Qu K, Pang Q, Wang Z, Zhou Y, Liu C. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature. Front Med 2016; 10:191-203. [PMID: 27185042 DOI: 10.1007/s11684-016-0450-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
The relationship between telomere length and cancer survival has been widely studied. To gain a deeper insight, we reviewed the published studies. A total of 29 studies evaluated telomere length in the peripheral blood; 22 studies evaluated telomere length in the tumor tissue. First, in the peripheral blood studies, for solid tumor patients with shortened telomere length, the combined hazard ratios (HRs) for mortality and tumor progression were 1.21 (95%CI, 1.10-1.32) and 1.71 (95%CI, 1.37-2.13), respectively. Meanwhile, in hematology malignancy, the combined HRs for mortality and tumor progression were 2.83 (95%CI, 2.14-3.74) and 2.65 (95%CI, 2.18-3.22), respectively. Second, in the studies that use tumor tissue, for patients with shortened telomeres, the combined HRs for mortality and tumor progression were 1.26 (95%CI, 0.95-1.66) and 1.65 (95%CI, 1.26-2.15), respectively. In the studies that calculate the telomere length ratios of tumor tissue to adjacent normal mucosa, for patients with lower telomere length ratios, the combined HRs were 0.66 (95%CI, 0.53-0.83) and 0.74 (95%CI, 0.41-1.32) for mortality and tumor progression, respectively. In conclusion, shortened telomere in peripheral blood and tumor tissue might indicate poor survival for cancer patients. However, by calculating the telomere length ratios of tumor tissue to adjacent normal mucosa, the lower ratio might indicate better survival.
Collapse
Affiliation(s)
- Xinsen Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhixin Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanyan Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
Mosrati MA, Willander K, Falk IJ, Hermanson M, Höglund M, Stockelberg D, Wei Y, Lotfi K, Söderkvist P. Association between TERT promoter polymorphisms and acute myeloid leukemia risk and prognosis. Oncotarget 2015; 6:25109-20. [PMID: 26298771 PMCID: PMC4694818 DOI: 10.18632/oncotarget.4668] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
Telomerase reverse transcriptase gene (TERT) promoter mutations are identified in many malignancies but not in hematological malignancies. Here we analyzed TERT and protection of telomeres 1 gene (POT1) mutations, and four different TERT SNVs in 226 acute myeloid leukemia (AML) patients and 806 healthy individuals in a case referent design, where also overall survival was assessed. A significant association for increased risk of AML was found for TERT SNVs, rs2853669 (OR = 2.45, p = 0.00015) and rs2736100 (OR = 1.5, p = 0.03). The overall survival for patients with CC genotype of rs2853669 was significantly shorter compared to those with TT or TC genotypes (p = 0.036 and 0.029 respectively). The influence of TERT rs2853669 CC on survival was confirmed in multivariable Cox regression analysis as an independent risk biomarker in addition to high risk group, higher age and treatment. No hot spot TERT promoter mutations at -228C > T or -250C > T or POT1 mutations could be identified in this AML cohort. We show that rs2853669 CC may be a risk factor for the development of AML that may also be used as a prognostic marker to identify high risk normal karyotype-AML (NK-AML) patients, for treatment guidance.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Case-Control Studies
- DNA Mutational Analysis
- Female
- Gene Frequency
- Genetic Association Studies
- Genetic Predisposition to Disease
- Heterozygote
- Homozygote
- Humans
- Kaplan-Meier Estimate
- Karyotyping
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Multivariate Analysis
- Mutation
- Odds Ratio
- Phenotype
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Proportional Hazards Models
- Risk Factors
- Telomerase/genetics
- Time Factors
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Mohamed Ali Mosrati
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kerstin Willander
- Department of Haematology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ingrid Jakobsen Falk
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Monica Hermanson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Höglund
- Division of Hematology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dick Stockelberg
- Section for Hematology and Coagulation, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yuan Wei
- Section for Hematology and Coagulation, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kourosh Lotfi
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Department of Hematology, County Council of Östergötland, Linköping, Sweden
| | - Peter Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
The Association between Telomere Length and Cancer Prognosis: Evidence from a Meta-Analysis. PLoS One 2015; 10:e0133174. [PMID: 26177192 PMCID: PMC4503690 DOI: 10.1371/journal.pone.0133174] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/24/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Telomeres are essential for chromosomal integrity and stability. Shortened telomere length (TL) has been associated with risk of cancers and aging-related diseases. Several studies have explored associations between TL and cancer prognosis, but the results are conflicting. METHODS Prospective studies on the relationship between TL and cancer survival were identified by a search of PubMed up to May 25, 2015. There were no restrictions on the cancer type or DNA source. The quality of the included studies was assessed using the Newcastle-Ottawa Scale. Meta-analysis approaches were conducted to determine pooled relative risks and 95% confidence intervals. RESULTS Thirty-three articles containing forty-five independent studies were ultimately involved in our meta-analysis, of which twenty-seven were about overall cancer survival and eighteen were about cancer progression. Short TL was associated with increased cancer mortality risk (RR = 1.30, 95%CI: 1.06-1.59) and poor cancer progression (RR = 1.44, 95%CI: 1.10-1.88), both with high levels of heterogeneity (I2 = 83.5%, P = 0.012for overall survival and I2 = 75.4%, P = 0.008 for progression). TL was an independent predictor of overall cancer survival and progression in chronic lymphocytic leukemia. Besides, short telomeres were also associated with increased colorectal cancer mortality and decreased overall survival of esophageal cancer, but not in other cancers. Cancer progression was associated with TL in Asian and America populations and short TL predicted poor cancer survival in older populations. Compared with tumor tissue cells, TL in blood lymphocyte cells was better for prediction. In addition, the associations remained significant when restricted to studies with adjustments for age, with larger sample sizes, measuring TL using southern blotting or estimating risk effects by hazard ratios. CONCLUSION Short TL demonstrated a significant association with poor cancer survival, suggesting the potential prognostic significance of TL. Additional large well-designed studies are needed to confirm our findings.
Collapse
|
11
|
Gu BW, Mason P. Telomere 3' overhang and disease. Leuk Lymphoma 2013; 54:1347-8. [PMID: 23343176 DOI: 10.3109/10428194.2013.769538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bai-Wei Gu
- Division of Hematology, Department of Pediatrics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|