1
|
Svozilova H, Vojtova L, Matulova J, Bruknerova J, Polakova V, Radova L, Doubek M, Plevova K, Pospisilova S. In vitro culture of leukemic cells in collagen scaffolds and carboxymethyl cellulose-polyethylene glycol gel. PeerJ 2024; 12:e18637. [PMID: 39655330 PMCID: PMC11627079 DOI: 10.7717/peerj.18637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is a common adult leukemia characterized by the accumulation of neoplastic mature B cells in blood, bone marrow, lymph nodes, and spleen. The disease biology remains unresolved in many aspects, including the processes underlying the disease progression and relapses. However, studying CLL in vitro poses a considerable challenge due to its complexity and dependency on the microenvironment. Several approaches are utilized to overcome this issue, such as co-culture of CLL cells with other cell types, supplementing culture media with growth factors, or setting up a three-dimensional (3D) culture. Previous studies have shown that 3D cultures, compared to conventional ones, can lead to enhanced cell survival and altered gene expression. 3D cultures can also give valuable information while testing treatment response in vitro since they mimic the cell spatial organization more accurately than conventional culture. Methods In our study, we investigated the behavior of CLL cells in two types of material: (i) solid porous collagen scaffolds and (ii) gel composed of carboxymethyl cellulose and polyethylene glycol (CMC-PEG). We studied CLL cells' distribution, morphology, and viability in these materials by a transmitted-light and confocal microscopy. We also measured the metabolic activity of cultured cells. Additionally, the expression levels of MYC, VCAM1, MCL1, CXCR4, and CCL4 genes in CLL cells were studied by qPCR to observe whether our novel culture approaches lead to increased adhesion, lower apoptotic rates, or activation of cell signaling in relation to the enhanced contact with co-cultured cells. Results Both materials were biocompatible, translucent, and permeable, as assessed by metabolic assays, cell staining, and microscopy. While collagen scaffolds featured easy manipulation, washability, transferability, and biodegradability, CMC-PEG was advantageous for its easy preparation process and low variability in the number of accommodated cells. Both materials promoted cell-to-cell and cell-to-matrix interactions due to the scaffold structure and generation of cell aggregates. The metabolic activity of CLL cells cultured in CMC-PEG gel was similar to or higher than in conventional culture. Compared to the conventional culture, there was (i) a lower expression of VCAM1 in both materials, (ii) a higher expression of CCL4 in collagen scaffolds, and (iii) a lower expression of CXCR4 and MCL1 (transcript variant 2) in collagen scaffolds, while it was higher in a CMC-PEG gel. Hence, culture in the material can suppress the expression of a pro-apoptotic gene (MCL1 in collagen scaffolds) or replicate certain gene expression patterns attributed to CLL cells in lymphoid organs (low CXCR4, high CCL4 in collagen scaffolds) or blood (high CXCR4 in CMC-PEG).
Collapse
Affiliation(s)
- Hana Svozilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucy Vojtova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Matulova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Bruknerova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Polakova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Bistué-Rovira À, Rico LG, Bardina J, Juncà J, Granada I, Bradford JA, Ward MD, Salvia R, Solé F, Petriz J. Persistence of Chronic Lymphocytic Leukemia Stem-like Populations under Simultaneous In Vitro Treatment with Curcumin, Fludarabine, and Ibrutinib: Implications for Therapy Resistance. Int J Mol Sci 2024; 25:1994. [PMID: 38396682 PMCID: PMC10888954 DOI: 10.3390/ijms25041994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.
Collapse
Affiliation(s)
- Àngel Bistué-Rovira
- Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain;
| | - Laura G. Rico
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Jorge Bardina
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordi Juncà
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Isabel Granada
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jolene A. Bradford
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Michael D. Ward
- Thermo Fisher Scientific, Fort Collins, CO 80524, USA; (J.A.B.); (M.D.W.)
| | - Roser Salvia
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Badalona, Spain; (J.J.); (I.G.); (F.S.)
| | - Jordi Petriz
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Spain; (L.G.R.); (R.S.)
| |
Collapse
|
3
|
Meloni M, Sana I, Mantione ME, Riba M, Muzio M. Toll-like receptor 9 signaling in chronic lymphocytic leukemia cell lines. FEBS Open Bio 2023; 13:2367-2374. [PMID: 37881888 PMCID: PMC10699106 DOI: 10.1002/2211-5463.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a prototypic neoplasia in which malignant cells strongly depend on microenvironmental stimulations in the lymphoid tissues where they accumulate; leukemic cells are exposed to interaction with bystander and accessory cells, as well as inflammatory soluble mediators. Cell lines are frequently used to model the pathobiology of this disease; however, they do not always recapitulate leukemic cell growth and response to stimulation, and no data are available on Toll-like receptors (TLR) signaling in CLL cell lines. To address this gap, we analyzed HG3, MEC2, and PCL12 cell lines, before and after CpG stimulation, by RNA-sequencing followed by bioinformatic analyses and validation experiments. We identified NFKBIZ mRNA and the corresponding IkBz protein as robust markers of TLR9 activation in both MEC2 and PCL12, but not in HG3 cells. Next, we compared our current results with previous results obtained with primary CLL patient samples and were able to conclude that MEC2 is most similar to the patients' cells in terms of global responsiveness to TLR stimulation; in particular, MEC2 better resembles the samples of patients, as it is characterized by high expression levels of IkBz, but with a lower number of genes regulated.
Collapse
Affiliation(s)
- Miriam Meloni
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| | - Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| | - Michela Riba
- Center for Omics SciencesSan Raffaele Hospital IRCCSMilanItaly
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental OncologySan Raffaele Hospital IRCCSMilanItaly
| |
Collapse
|
4
|
Epigenetic silencing of tumor suppressor long non-coding RNA BM742401 in chronic lymphocytic leukemia. Oncotarget 2018; 7:82400-82410. [PMID: 27689399 PMCID: PMC5347700 DOI: 10.18632/oncotarget.12252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022] Open
Abstract
BM742401 is a tumor suppressor lncRNA downregulated in gastric cancer. As the promoter region and the entire transcript are embedded in a CpG island, we postulated that BM742401 is a tumor suppressor lncRNA inactivated by DNA methylation in chronic lymphocytic leukemia (CLL). The promoter of BM742401 was unmethylated in normal controls including three each of normal bone marrow, peripheral blood buffy coats, and CD19-sorted peripheral B-cells, but methylated in four (57.1%) CLL cell lines. Methylation of BM742401 correlated inversely with expression. In the completely methylated WAC3CD5+ CLL cells, 5-Aza-2′-deoxycytidine treatment led to promoter demethylation and re-expression of BM742401 transcript. Functionally, stable overexpression of BM742401 resulted in inhibition of cellular proliferation and enhanced apoptosis through caspase-9-dependent intrinsic but not caspase-8-dependent extrinsic apoptosis pathway, suggesting a tumor suppressor role of BM742401 in CLL. In primary CLL samples, methylation of BM742401 was detected in 43/98 (43.9%) of patients. Moreover, among CLL patients with standard-risk cytogenetic aberrations, methylation of BM742401 correlated with advanced Rai stage (≥ stage 2)(P = 0.002). Furthermore, BM742401 methylation was associated with miR-129-2 methylation (P = 0.05). BM742401 is a tumor suppressor lncRNA frequently methylated in CLL. The mechanism of BM742401 as a tumor suppressor warrants further studies.
Collapse
|
5
|
Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways. Oncotarget 2016; 6:44422-36. [PMID: 26517243 PMCID: PMC4792566 DOI: 10.18632/oncotarget.6251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
We hypothesize that miR-3151, localized to a GWAS-identified chronic lymphocytic leukemia (CLL) risk locus (8q22.3), is a tumor suppressor miRNA silenced by promoter DNA methylation in CLL. The promoter of miR-3151 was methylated in 5/7 (71%) CLL cell lines, 30/98 (31%) diagnostic primary samples, but not normal controls. Methylation of miR-3151 correlated inversely with expression. Treatment with 5-Aza-2′-deoxycytidine led to promoter demethylation and miR-3151 re-expression. Luciferase assay confirmed MAP-kinase activating death domain (MADD) and phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2) as direct targets of miR-3151. Moreover, restoration of miR-3151 resulted in inhibition of cellular proliferation and enhanced apoptosis, repression of MADD and PIK3R2, downregulation of MEK/ERK and PI3K/AKT signaling, and repression of MCL1. Lastly, miR-3151 methylation was significantly associated with methylation of miR-203 and miR-34b/c in primary CLL samples. Therefore, this study showed that miR-3151 is a tumor suppressive miRNA frequently hypermethylated and hence silenced in CLL. miR-3151 silencing by DNA methylation protected CLL cells from apoptosis through over-expression of its direct targets MADD and PIK3R2, hence constitutive activation of MEK/ERK and PI3K/AKT signaling respectively, and consequently over-expression of MCL1.
Collapse
|
6
|
Amin NA, Balasubramanian S, Saiya-Cork K, Shedden K, Hu N, Malek SN. Cell-Intrinsic Determinants of Ibrutinib-Induced Apoptosis in Chronic Lymphocytic Leukemia. Clin Cancer Res 2016; 23:1049-1059. [PMID: 27535981 DOI: 10.1158/1078-0432.ccr-15-2921] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Purpose: Ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, is approved for the treatment of relapsed chronic lymphocytic leukemia (CLL) and CLL with del17p. Mechanistically, ibrutinib interferes with B-cell receptor (BCR) signaling as well as multiple CLL cell-to-microenvironment interactions. Given the importance of ibrutinib in the management of CLL, a deeper understanding of factors governing sensitivity and resistance is warranted.Experimental Design: We studied 48 longitudinally sampled paired CLL samples, 42 of which were procured before and after standard CLL chemotherapies, and characterized them for well-studied CLL molecular traits as well as by whole-exome sequencing and SNP 6.0 array profiling. We exposed these samples to 0.25 to 5 μmol/L of ibrutinib ex vivo and measured apoptosis fractions as well as BCR signaling by immunoblotting. We disrupted TP53 in HG3, PGA1, and PG-EBV cell lines and measured BCR signaling and ibrutinib responses.Results: CLL samples demonstrated a surprisingly wide range of ex vivo sensitivities to ibrutinib, with IC50 values ranging from 0.4 to 9.7 μmol/L. Unmutated IGVH status, elevated ZAP70 expression, and trisomy 12 were associated with heightened sensitivity to ibrutinib treatment. Five CLL samples were substantially more resistant to ibrutinib following relapse from chemotherapy; of these, three had acquired a del17p/TP53-mutated status. A validation sample of 15 CLL carrying TP53 mutations, of which 13 carried both del17p and a TP53 mutation, confirmed substantially less sensitivity to ibrutinib-induced apoptosis.Conclusions: This study identifies that CLL harboring del17p/TP53-mutated cells are substantially less sensitive to ibrutinib-induced apoptosis than del17p/TP53 wild-type cells. Clin Cancer Res; 23(4); 1049-59. ©2016 AACR.
Collapse
Affiliation(s)
- Nisar A Amin
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Kamlai Saiya-Cork
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, Michigan
| | - Nan Hu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Sami N Malek
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
7
|
El-Schich Z, Abdullah M, Shinde S, Dizeyi N, Rosén A, Sellergren B, Wingren AG. Different expression levels of glycans on leukemic cells-a novel screening method with molecularly imprinted polymers (MIP) targeting sialic acid. Tumour Biol 2016; 37:13763-13768. [PMID: 27476172 PMCID: PMC5097081 DOI: 10.1007/s13277-016-5280-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
Sialic acid (SA) is normally expressed on the cell membranes and is located at the terminal position of the sugar chains. SA plays an important role for regulation of the innate immunity, function as markers of the cells and can be recognized by a variety of receptors. Interestingly, the level of SA expression is increased on metastatic cancer cells. The availability of specific antibodies against SA is limited and, therefore, biomarker tools for detection of SA are lacking. We have recently presented a novel method for specific fluorescence labeling of SA molecular imprinted polymers (MIP). Here, we have performed an extended screening of SA expression by using SA-MIP and included four different chronic lymphocytic leukemia (CLL) cell lines, conveniently analyzed by flow cytometry and fluorescence microscopy. SA expression was detected in four cell lines at different levels, and the SA expression were verified with lectin-FITC. These results show that SA-MIP can be used as a plastic antibody for detection of SA using both flow cytometry and fluorescence microscopy. We suggest that SA-MIP can be used for screening of different tumor cells of various stages, including CLL cells.
Collapse
Affiliation(s)
- Zahra El-Schich
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden.
| | - Mohammad Abdullah
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Sudhirkumar Shinde
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Nishtman Dizeyi
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| |
Collapse
|
8
|
Lilienthal N, Lohmann G, Crispatzu G, Vasyutina E, Zittrich S, Mayer P, Herling CD, Tur MK, Hallek M, Pfitzer G, Barth S, Herling M. A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death-Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells. Mol Cancer Ther 2016; 15:971-84. [PMID: 26826117 DOI: 10.1158/1535-7163.mct-15-0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022]
Abstract
The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR.
Collapse
MESH Headings
- Antineoplastic Agents/administration & dosage
- Apoptosis/drug effects
- Cell Line, Tumor
- Death-Associated Protein Kinases/antagonists & inhibitors
- Death-Associated Protein Kinases/chemistry
- Death-Associated Protein Kinases/genetics
- Death-Associated Protein Kinases/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Multigene Family
- Mutation
- Phosphorylation
- Protein Interaction Domains and Motifs/genetics
- Recombinant Fusion Proteins/administration & dosage
- Sialic Acid Binding Ig-like Lectin 2/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
Collapse
Affiliation(s)
- Nils Lilienthal
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Federal Institute for Drugs and Devices (BfArM), Bonn, Germany
| | - Gregor Lohmann
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Giuliano Crispatzu
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Elena Vasyutina
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Stefan Zittrich
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Petra Mayer
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Carmen Diana Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital, Justus Liebig University Gießen, Gießen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology; University of Cologne, Köln, Germany
| | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, RWTH Aachen, Aachen, Germany. South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany. Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and CECAD, University of Cologne, Köln, Germany.
| |
Collapse
|
9
|
Agathangelidis A, Scarfò L, Barbaglio F, Apollonio B, Bertilaccio MTS, Ranghetti P, Ponzoni M, Leone G, De Pascali V, Pecciarini L, Ghia P, Caligaris-Cappio F, Scielzo C. Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS One 2015; 10:e0130195. [PMID: 26110819 PMCID: PMC4481539 DOI: 10.1371/journal.pone.0130195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Immortalized cell lines representative of chronic lymphocytic leukemia (CLL) can assist in understanding disease pathogenesis and testing new therapeutic agents. At present, very few representative cell lines are available. We here describe the characterization of a new cell line (PCL12) that grew spontaneously from the peripheral blood (PB) of a CLL patient with progressive disease and EBV infection. The CLL cell origin of PCL12 was confirmed after the alignment of its IGH sequence against the “original” clonotypic sequence. The IGH gene rearrangement was truly unmutated and no CLL-related cytogenetic or genetic lesions were detected. PCL12 cells express CD19, CD20, CD5, CD23, low levels of IgM and IgD and the poor-outcome-associated prognostic markers CD38, ZAP70 and TCL1. In accordance with its aggressive phenotype the cell line is inactive in terms of LYN and HS1 phosphorylation. BcR signalling pathway is constitutively active and anergic in terms of p-ERK and Calcium flux response to α-IgM stimulation. PCL12 cells strongly migrate in vitro in response to SDF-1 and form clusters. Finally, they grow rapidly and localize in all lymphoid organs when xenotrasplanted in Rag2-/-γc-/- mice. PCL12 represents a suitable preclinical model for testing pharmacological agents.
Collapse
MESH Headings
- Animals
- CD5 Antigens/metabolism
- Cell Line, Tumor
- Gene Rearrangement
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Neoplasm Transplantation
- Phenotype
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Andreas Agathangelidis
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
| | - Lydia Scarfò
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federica Barbaglio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Benedetta Apollonio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maria Teresa Sabrina Bertilaccio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maurilio Ponzoni
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | - Gabriella Leone
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | | | | | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federico Caligaris-Cappio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Cristina Scielzo
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- * E-mail:
| |
Collapse
|
10
|
Prinz C, Vasyutina E, Lohmann G, Schrader A, Romanski S, Hirschhäuser C, Mayer P, Frias C, Herling CD, Hallek M, Schmalz HG, Prokop A, Mougiakakos D, Herling M. Organometallic nucleosides induce non-classical leukemic cell death that is mitochondrial-ROS dependent and facilitated by TCL1-oncogene burden. Mol Cancer 2015; 14:114. [PMID: 26041471 PMCID: PMC4453051 DOI: 10.1186/s12943-015-0378-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Background Redox stress is a hallmark of the rewired metabolic phenotype of cancer. The underlying dysregulation of reactive oxygen species (ROS) is interconnected with abnormal mitochondrial biogenesis and function. In chronic lymphocytic leukemia (CLL), elevated ROS are implicated in clonal outgrowth and drug resistance. The pro-survival oncogene T-cell leukemia 1 (TCL1) is causally linked to the high threshold towards classical apoptosis in CLL. We investigated how aberrant redox characteristics and bioenergetics of CLL are impacted by TCL1 and if this is therapeutically exploitable. Methods Bio-organometallic chemistry provided compounds containing a cytosine nucleobase, a metal core (ferrocene, ruthenocene, Fe(CO)3), and a 5’-CH2O-TDS substituent. Four of these metal-containing nucleoside analogues (MCNA) were tested for their efficacy and mode of action in CLL patient samples, gene-targeted cell lines, and murine TCL1-transgenic splenocytes. Results The MCNA showed a marked and selective cytotoxicity towards CLL cells. MCNA activity was equally observed in high-risk disease groups, including those of del11q/del17p cytogenetics and of clinical fludarabine resistance. They overcame protective stromal cell interactions. MCNA-evoked PARP-mediated cell death was non-autophagic and non-necrotic as well as caspase- and P53-independent. This unconventional apoptosis involved early increases of ROS, which proved indispensible based on mitigation of MCNA-triggered death by various scavengers. MCNA exposure reduced mitochondrial respiration (oxygen consumption rate; OCR) and induced a rapid membrane depolarization (∆ΨM). These characteristics distinguished the MCNA from the alkylator bendamustine and from fludarabine. Higher cellular ROS and increased MCNA sensitivity were linked to TCL1 expression. The presence of TCL1 promoted a mitochondrial release of in part caspase-independent apoptotic factors (AIF, Smac, Cytochrome-c) in response to MCNA. Although basal mitochondrial respiration (OCR) and maximal respiratory capacity were not affected by TCL1 overexpression, it mediated a reduced aerobic glycolysis (lactate production) and a higher fraction of oxygen consumption coupled to ATP-synthesis. Conclusions Redox-active substances such as organometallic nucleosides can confer specific cytotoxicity to ROS-stressed cancer cells. Their P53- and caspase-independent induction of non-classical apoptosis implicates that redox-based strategies can overcome resistance to conventional apoptotic triggers. The high TCL1-oncogenic burden of aggressive CLL cells instructs their particular dependence on mitochondrial energetic flux and renders them more susceptible towards agents interfering in mitochondrial homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0378-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Prinz
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Elena Vasyutina
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Gregor Lohmann
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Alexandra Schrader
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Steffen Romanski
- Division of Organic Chemistry, University of Cologne, Cologne, Germany.
| | | | - Petra Mayer
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Corazon Frias
- Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Cologne, Germany.
| | - Carmen D Herling
- Department I of Internal Medicine, CIO Köln-Bonn, and CECAD, University of Cologne, Cologne, Germany.
| | - Michael Hallek
- Department I of Internal Medicine, CIO Köln-Bonn, and CECAD, University of Cologne, Cologne, Germany.
| | | | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Cologne, Germany.
| | | | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Zhu D, Wang Z, Zhao JJ, Calimeri T, Meng J, Hideshima T, Fulciniti M, Kang Y, Ficarro S, Tai YT, Hunter Z, McMilin D, Tong H, Mitsiades CS, Wu C, Treon S, Dorfman DM, Pinkus G, Munshi N, Tassone P, Marto J, Anderson K, Carrasco RD. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med 2015; 21:572-80. [PMID: 26005854 PMCID: PMC4567046 DOI: 10.1038/nm.3867] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
B cell malignancies frequently colonize the bone marrow. The mechanisms responsible for this preferential homing are incompletely understood. Here we studied multiple myeloma (MM) as a model of a terminally differentiated B cell malignancy that selectively colonizes the bone marrow. We found that extracellular CyPA (eCyPA), secreted by bone marrow endothelial cells (BMECs), promoted the colonization and proliferation of MM cells in an in vivo scaffold system via binding to its receptor, CD147, on MM cells. The expression and secretion of eCyPA by BMECs was enhanced by BCL9, a Wnt-β-catenin transcriptional coactivator that is selectively expressed by these cells. eCyPA levels were higher in bone marrow serum than in peripheral blood in individuals with MM, and eCyPA-CD147 blockade suppressed MM colonization and tumor growth in the in vivo scaffold system. eCyPA also promoted the migration of chronic lymphocytic leukemia and lymphoplasmacytic lymphoma cells, two other B cell malignancies that colonize the bone marrow and express CD147. These findings suggest that eCyPA-CD147 signaling promotes the bone marrow homing of B cell malignancies and offer a compelling rationale for exploring this axis as a therapeutic target for these malignancies.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Zhongqiu Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang
Hospital, Southern Medical University, Guangdong, China
| | - Jian-Jun Zhao
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Teresa Calimeri
- Department of Experimental and Clinical Medicine, Magna Graecia
University and Cancer Center, Catanzaro, Italy
| | - Jiang Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Fourth Affiliated Hospital of Harbin Medical University,
Heilongjiang, China
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yue Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Institute of Biophysics, Chinese Academy of Sciences, China
| | - Scott Ficarro
- Department of Cancer Biology and Blais Proteomics Center,
Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology,
Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary Hunter
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas McMilin
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Haoxuan Tong
- Department of Cancer Biology and Blais Proteomics Center,
Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Constantine S. Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Treon
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
| | - David M. Dorfman
- Department of Pathology, Brigham & Women's Hospital, Boston,
Massachusetts, USA
| | - Geraldine Pinkus
- Department of Pathology, Brigham & Women's Hospital, Boston,
Massachusetts, USA
| | - Nikhil Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia
University and Cancer Center, Catanzaro, Italy
| | - Jarrod Marto
- Department of Cancer Biology and Blais Proteomics Center,
Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology,
Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruben D. Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute,
Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham & Women's Hospital, Boston,
Massachusetts, USA
| |
Collapse
|
12
|
Vasyutina E, Boucas JM, Bloehdorn J, Aszyk C, Crispatzu G, Stiefelhagen M, Breuer A, Mayer P, Lengerke C, Döhner H, Beutner D, Rosenwald A, Stilgenbauer S, Hallek M, Benner A, Herling M. The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL. Leukemia 2015; 29:2003-14. [DOI: 10.1038/leu.2015.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
|
13
|
Rasul E, Salamon D, Nagy N, Leveau B, Banati F, Szenthe K, Koroknai A, Minarovits J, Klein G, Klein E. The MEC1 and MEC2 lines represent two CLL subclones in different stages of progression towards prolymphocytic leukemia. PLoS One 2014; 9:e106008. [PMID: 25162594 PMCID: PMC4146575 DOI: 10.1371/journal.pone.0106008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022] Open
Abstract
The EBV carrying lines MEC1 and MEC2 were established earlier from explants of blood derived cells of a chronic lymphocytic leukemia (CLL) patient at different stages of progression to prolymphocytoid transformation (PLL). This pair of lines is unique in several respects. Their common clonal origin was proven by the rearrangement of the immunoglobulin genes. The cells were driven to proliferation in vitro by the same indigenous EBV strain. They are phenotypically different and represent subsequent subclones emerging in the CLL population. Furthermore they reflect the clinical progression of the disease. We emphasize that the support for the expression of the EBV encoded growth program is an important differentiation marker of the CLL cells of origin that was shared by the two subclones. It can be surmised that proliferation of EBV carrying cells in vitro, but not in vivo, reflects the efficient surveillance that functions even in the severe leukemic condition. The MEC1 line arose before the aggressive clinical stage from an EBV carrying cell within the subclone that was in the early prolymphocytic transformation stage while the MEC2 line originated one year later, from the subsequent subclone with overt PLL characteristics. At this time the disease was disseminated and the blood lymphocyte count was considerably elevated. The EBV induced proliferation of the MEC cells belonging to the subclones with markers of PLL agrees with earlier reports in which cells of PLL disease were infected in vitro and immortalized to LCL. They prove also that the expression of EBV encoded set of proteins can be determined at the event of infection. This pair of lines is particularly important as they provide in vitro cells that represent the subclonal evolution of the CLL disease. Furthermore, the phenotype of the MEC1 cells shares several characteristics of ex vivo CLL cells.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Biomarkers/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Clonal Evolution/immunology
- Clone Cells/immunology
- Clone Cells/pathology
- Clone Cells/virology
- Disease Progression
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Expression
- Herpesvirus 4, Human/physiology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukemia, Prolymphocytic/immunology
- Leukemia, Prolymphocytic/pathology
- Leukemia, Prolymphocytic/virology
- Lymphocyte Count
- Time Factors
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Daniel Salamon
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Benjamin Leveau
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Ferenc Banati
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Kalman Szenthe
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár, Hungary
| | - Anita Koroknai
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| | - Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Instititet, Stockholm, Sweden
| |
Collapse
|
14
|
Hertlein E, Beckwith KA, Lozanski G, Chen TL, Towns WH, Johnson AJ, Lehman A, Ruppert AS, Bolon B, Andritsos L, Lozanski A, Rassenti L, Zhao W, Jarvinen TM, Senter L, Croce CM, Symer DE, de la Chapelle A, Heerema NA, Byrd JC. Characterization of a new chronic lymphocytic leukemia cell line for mechanistic in vitro and in vivo studies relevant to disease. PLoS One 2013; 8:e76607. [PMID: 24130782 PMCID: PMC3793922 DOI: 10.1371/journal.pone.0076607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/26/2013] [Indexed: 12/30/2022] Open
Abstract
Studies of chronic lymphocytic leukemia (CLL) have yielded substantial progress, however a lack of immortalized cell lines representative of the primary disease has hampered a full understanding of disease pathogenesis and development of new treatments. Here we describe a novel CLL cell line (OSU-CLL) generated by EBV transformation, which displays a similar cytogenetic and immunophenotype observed in the patient’s CLL (CD5 positive with trisomy 12 and 19). A companion cell line was also generated from the same patient (OSU-NB). This cell line lacked typical CLL characteristics, and is likely derived from the patient’s normal B cells. In vitro migration assays demonstrated that OSU-CLL exhibits migratory properties similar to primary CLL cells whereas OSU-NB has significantly reduced ability to migrate spontaneously or towards chemokine. Microarray analysis demonstrated distinct gene expression patterns in the two cell lines, including genes on chromosomes 12 and 19, which is consistent with the cytogenetic profile in this cell line. Finally, OSU-CLL was readily transplantable into NOG mice, producing uniform engraftment by three weeks with leukemic cells detectable in the peripheral blood spleen and bone marrow. These studies describe a new CLL cell line that extends currently available models to study gene function in this disease.
Collapse
Affiliation(s)
- Erin Hertlein
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Kyle A. Beckwith
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Gerard Lozanski
- Department of Pathology, the Ohio State University, Columbus, Ohio, United States of America
| | - Timothy L. Chen
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - William H. Towns
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Amy J. Johnson
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Amy Lehman
- Center for Biostatistics, the Ohio State University, Columbus, Ohio, United States of America
| | - Amy S. Ruppert
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Brad Bolon
- Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared Resource, the Ohio State University, Columbus, Ohio, United States of America
| | - Leslie Andritsos
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Arletta Lozanski
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
| | - Laura Rassenti
- Moores University of California-San Diego Cancer Center, University of California San Diego, California, United States of America
| | - Weiqiang Zhao
- Department of Pathology, the Ohio State University, Columbus, Ohio, United States of America
| | - Tiina M. Jarvinen
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Leigha Senter
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - David E. Symer
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Albert de la Chapelle
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, Comprehensive Cancer Center at the Ohio State University, Columbus, Ohio, United States of America
| | - Nyla A. Heerema
- Department of Pathology, the Ohio State University, Columbus, Ohio, United States of America
| | - John C. Byrd
- Department of Internal Medicine, Division of Hematology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, United States of America
- *
| |
Collapse
|