1
|
Yue N, Jin Q, Li C, Zhang L, Cao J, Wu C. CD36: a promising therapeutic target in hematologic tumors. Leuk Lymphoma 2024; 65:1749-1765. [PMID: 38982639 DOI: 10.1080/10428194.2024.2376178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cluster of differentiation 36 (CD36) is a multiligand receptor with important roles in lipid metabolism, angiogenesis and innate immunity, and its diverse effects may depend on the binding of specific ligands in different contexts. CD36 is expressed not only on immune cells in the tumor microenvironment (TME) but also on some hematopoietic cells. CD36 is associated with the growth, metastasis and drug resistance in some hematologic tumors, such as leukemia, lymphoma and myelodysplastic syndrome. Currently, some targeted therapeutic agents against CD36 have been developed, such as anti-CD36 antibodies, CD36 antagonists (small molecules) and CD36 expression inhibitors. This paper not only innovatively addresses the role of CD36 in some hematopoietic cells, such as erythrocytes, hematopoietic stem cells and platelets, but also pays special attention to the role of CD36 in the development of hematologic tumors, and suggests that CD36 may be a potential cancer therapeutic target in hematologic tumors.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiajia Cao
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Han Y, Li C, Liu S, Gao J, He Y, Xiao H, Chen Q, Zheng Y, Chen H, Zhu X. Combined targeting of Hedgehog/GLI1 and Wnt/β-catenin pathways in mantle cell lymphoma. Hematol Oncol 2024; 42:e3305. [PMID: 39205619 DOI: 10.1002/hon.3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Mantle cell lymphoma (MCL) is a rare and aggressive form of non-Hodgkin lymphoma. Challenges in its treatment include relapse, drug resistance, and a short survival period. The Hedgehog/GLI1 (Hh/GLI1) and Wnt/β-catenin pathways are crucial in cancer cell proliferation, survival, and drug resistance, making them significant targets for anticancer research. This study aimed to assess the effectiveness of combining inhibitors for both pathways against MCL and investigate the underlying molecular mechanisms. The co-expression of key proteins from the Hh/GLI1 and Wnt/β-catenin pathways was observed in MCL. Targeting the Hh/GLI1 pathway with the GLI1 inhibitor GANT61 and the Wnt/β-catenin pathway with the CBP/β-catenin transcription inhibitor ICG-001, dual-target therapy was demonstrated to synergistically suppressed the activity of MCL cells. This approach promoted MCL cell apoptosis, induced G0/G1 phase blockade, decreased the percentage of S-phase cells, and enhanced the sensitivity of MCL cells to the drugs adriamycin and ibrutinib. Both GANT61 and ICG-001 downregulated GLI1 and β-catenin while upregulating GSK-3β expression. The interaction between Hh/GLI1 and Wnt/β-catenin pathways was mediated by GANT61-dependent Hh/GLI1 inhibition. Moreover, GLI1 knockdown combined with ICG-001 synergistically induced apoptosis and increased drug sensitivity of MCL cells to doxorubicin and ibrutinib. GANT61 attenuated the overexpression of β-catenin and decreased the inhibition of GSK-3β in MCL cells. Overall, the combined targeting of both the Hh/GLI1 and Wnt/β-catenin pathways was more effective in suppressing proliferation, inducing G0/G1 cycle retardation, promoting apoptosis, and increasing drug sensitivity of MCL cells than mono treatments. These findings emphasize the potential of combinatorial therapy for treating MCL patients.
Collapse
Affiliation(s)
- Yan Han
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Chuntuan Li
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Shengquan Liu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jingjing Gao
- Department of Blood Transfusion, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yanjun He
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Huifang Xiao
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Qi Chen
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yan Zheng
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Hongyuan Chen
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- Fujian Medical University, Fuzhou, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Guerrero-Rodríguez SL, Mata-Cruz C, Pérez-Tapia SM, Velasco-Velázquez MA. Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol 2022; 10:1079076. [PMID: 36568966 PMCID: PMC9772993 DOI: 10.3389/fcell.2022.1079076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
CD36 is highly expressed in diverse tumor types and its expression correlates with advanced stages, poor prognosis, and reduced survival. In cancer cells, CD36: 1) increases fatty acid uptake, reprogramming lipid metabolism; 2) favors cancer cell proliferation, and 3) promotes epithelial-mesenchymal transition. Furthermore, CD36 expression correlates with the expression of cancer stem cell markers and CD36+ cancer cells display increased stemness functional properties, including clonogenicity, chemo- and radioresistance, and metastasis-initiating capability, suggesting CD36 is a marker of the cancer stem cell population. Thus, CD36 has been pointed as a potential therapeutic target in cancer. At present, at least three different types of molecules have been developed for reducing CD36-mediated functions: blocking monoclonal antibodies, small-molecule inhibitors, and compounds that knock-down CD36 expression. Herein, we review the role of CD36 in cancer progression, its participation in stemness control, as well as the efficacy of reported CD36 inhibitors in cancer cell cultures and animal models. Overall, the evidence compiled points that CD36 is a valid target for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
| | - Cecilia Mata-Cruz
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Graduate Program in Biochemical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Research and Development in Biotherapeutics Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological products LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
- Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Marco A. Velasco-Velázquez
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Deciphering the Elevated Lipid via CD36 in Mantle Cell Lymphoma with Bortezomib Resistance Using Synchrotron-Based Fourier Transform Infrared Spectroscopy of Single Cells. Cancers (Basel) 2019; 11:cancers11040576. [PMID: 31022903 PMCID: PMC6521097 DOI: 10.3390/cancers11040576] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Despite overall progress in improving cancer treatments, the complete response of mantle cell lymphoma (MCL) is still limited due to the inevitable development of drug resistance. More than half of patients did not attain response to bortezomib (BTZ), the approved treatment for relapsed or refractory MCL. Understanding how MCL cells acquire BTZ resistance at the molecular level may be a key to the long-term management of MCL patients and new therapeutic strategies. We established a series of de novo BTZ-resistant human MCL-derived cells with approximately 15- to 60-fold less sensitivity than those of parental cells. Using gene expression profiling, we discovered that putative cancer-related genes involved in drug resistance and cell survival tested were mostly downregulated, likely due to global DNA hypermethylation. Significant information on dysregulated lipid metabolism was obtained from synchrotron-based Fourier transform infrared (FTIR) spectroscopy of single cells. We demonstrated for the first time an upregulation of CD36 in highly BTZ-resistant cells in accordance with an increase in their lipid accumulation. Ectopic expression of CD36 causes an increase in lipid droplets and renders BTZ resistance to various human MCL cells. By contrast, inhibition of CD36 by neutralizing antibody strongly enhances BTZ sensitivity, particularly in CD36-overexpressing cells and de novo BTZ-resistant cells. Together, our findings highlight the potential application of CD36 inhibition for BTZ sensitization and suggest the use of FTIR spectroscopy as a promising technique in cancer research.
Collapse
|
5
|
Luanpitpong S, Poohadsuan J, Samart P, Kiratipaiboon C, Rojanasakul Y, Issaragrisil S. Reactive oxygen species mediate cancer stem-like cells and determine bortezomib sensitivity via Mcl-1 and Zeb-1 in mantle cell lymphoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3739-3753. [DOI: 10.1016/j.bbadis.2018.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/26/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022]
|
6
|
Smith A, Roman E, Appleton S, Howell D, Johnson R, Burton C, Patmore R. Impact of novel therapies for mantle cell lymphoma in the real world setting: a report from the UK's Haematological Malignancy Research Network (HMRN). Br J Haematol 2018. [PMID: 29532919 PMCID: PMC5947165 DOI: 10.1111/bjh.15170] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment landscape for mantle cell lymphoma (MCL) has changed dramatically in recent years, with findings from clinical trials reporting improvements in survival. Data on the general patient population are, however, sparse; and it is unclear whether the effects observed in clinical trials have translated into the real-world setting. To investigate this, we examined first-line and relapsed/refractory (RR) disease management in 335 MCL patients diagnosed between 2004 and 2015 in an established population-based patient cohort, along with data on demographic, diagnostic and prognostic factors. Marked treatment and survival changes were observed; first-line rituximab immunotherapy, for example, increased from 32% to 86% over the 11-year period, and median survival increased from 2·0 years among those first treated in 2004-2011 to 3·5 years among those treated in 2012-2015. Outcomes for RR disease also improved, from 8 months in 2004-2011 to 16·8 months in 2012-2015, coinciding with the introduction of agents, such as bendamustine and ibrutinib. Encouragingly, improvements were seen across all ages; 1-year overall survival among patients over 70 years treated for RR disease almost doubled. Our analyses underscore the importance of monitoring the impact of treatment changes in the real-world setting.
Collapse
Affiliation(s)
- Alexandra Smith
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Eve Roman
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Simon Appleton
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Debra Howell
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Rod Johnson
- Department of Clinical Haematology, St James's University Hospital, Leeds, UK
| | - Cathy Burton
- Department of Clinical Haematology, St James's University Hospital, Leeds, UK.,Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Russell Patmore
- Queen's Centre for Oncology and Haematology, Hull and East Yorkshire Hospitals, Cottingham, UK
| |
Collapse
|
7
|
Lee HJ, Romaguera JE, Feng L, Desai AP, Zhang L, Fanale M, Samaniego F, Hagemeister FB, Fayad LE, Rodriguez MA, Medeiros JL, Hartig K, Nomie K, Ahmed M, Badillo M, Ye H, Oki Y, Lin P, Nastoupil L, Westin J, Wang M. Phase II Study of Bortezomib in Combination with Cyclophosphamide and Rituximab for Relapsed or Refractory Mantle Cell Lymphoma. Oncologist 2017; 22:549-553. [PMID: 28408615 PMCID: PMC5423503 DOI: 10.1634/theoncologist.2016-0328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/17/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Relapsed or refractory mantle cell lymphoma (MCL) has a poor prognosis. The best outcome is achieved in patients who have a partial or complete response to salvage treatment and proceed to allogeneic stem cell transplant. PATIENTS AND METHODS Twenty-one patients were given a combination regimen of bortezomib, cyclophosphamide, and rituximab at MD Anderson Cancer Center as part of a single-arm, prospective, open-label phase II clinical trial. The median age was 66 years, with a median number of prior treatments of three. Sixty-seven percent had failed intensive chemoimmunotherapy and 43% were intermediate/high risk according to the MCL international prognostic index score, with a median Ki-67 proliferation index of 45% in those who were tested. RESULTS The rates of overall and complete response achieved were 74% and 42%, respectively, with median progression-free and overall survivals of 9 months and 36.4 months, respectively. The regimen's toxicity profile was acceptable; only 25% of the cycles resulted in grade 3 or 4 neutropenia or thrombocytopenia, and only 3% of cycles produced grade 3-4 fatigue. There were no episodes of grade 3-4 neuropathy. CONCLUSION The combination of bortezomib with cyclophosphamide and rituximab is an effective and well-tolerated regimen in patients with relapsed/refractory MCL. Because of its low toxicity, future combinations of this regimen with other promising drugs that have different mechanisms of action offer a realistic possibility that may improve outcomes for patients who have MCL. The Oncologist 2017;22:549-553 IMPLICATIONS FOR PRACTICE: The combination of bortezomib with cyclophosphamide and rituximab represents an additional effective novel salvage regimen for mantle cell lymphoma. This combination adds to the growing list of treatment options available for patients with mantle cell lymphoma.
Collapse
Affiliation(s)
- Hun Ju Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge E Romaguera
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Feng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aakash P Desai
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liang Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michelle Fanale
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria A Rodriguez
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey L Medeiros
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kimberly Hartig
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krystle Nomie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Makhdum Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Badillo
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haige Ye
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yasuhiro Oki
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pei Lin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
McNally GA, Long JM, Brophy LR, Badillo MR. Ibrutinib: Implications for Use in the Treatment of Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia. J Adv Pract Oncol 2015; 6:420-31. [PMID: 27069735 PMCID: PMC4803460 DOI: 10.6004/jadpro.2015.6.5.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Gretchen Anne McNally
- 1The Ohio State University-Arthur G. James Cancer Hospital, Columbus, Ohio; 2Whittingham Cancer Center, Norwalk Hospital, Norwalk, Connecticut; 3TriHealth Cancer Institute, Cincinnati, Ohio; 4MD Anderson Cancer Center, Houston, Texas
| | - Jennifer M Long
- 1The Ohio State University-Arthur G. James Cancer Hospital, Columbus, Ohio; 2Whittingham Cancer Center, Norwalk Hospital, Norwalk, Connecticut; 3TriHealth Cancer Institute, Cincinnati, Ohio; 4MD Anderson Cancer Center, Houston, Texas
| | - Lynne R Brophy
- 1The Ohio State University-Arthur G. James Cancer Hospital, Columbus, Ohio; 2Whittingham Cancer Center, Norwalk Hospital, Norwalk, Connecticut; 3TriHealth Cancer Institute, Cincinnati, Ohio; 4MD Anderson Cancer Center, Houston, Texas
| | - Maria R Badillo
- 1The Ohio State University-Arthur G. James Cancer Hospital, Columbus, Ohio; 2Whittingham Cancer Center, Norwalk Hospital, Norwalk, Connecticut; 3TriHealth Cancer Institute, Cincinnati, Ohio; 4MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
Mathur R, Sehgal L, Braun FK, Berkova Z, Romaguerra J, Wang M, Rodriguez MA, Fayad L, Neelapu SS, Samaniego F. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol 2015; 8:63. [PMID: 26048374 PMCID: PMC4460883 DOI: 10.1186/s13045-015-0161-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is an aggressive and incurable form of non-Hodgkin's lymphoma. Despite initial intense chemotherapy, up to 50% of cases of MCL relapse often in a chemoresistant form. We hypothesized that the recently identified MCL-initiating cells (MCL-ICs) are the main reason for relapse and chemoresistance of MCL. Cancer stem cell-related pathways such as Wnt could be responsible for their maintenance and survival. METHODS We isolated MCL-ICs from primary MCL cells on the basis of a defined marker expression pattern (CD34-CD3-CD45+CD19-) and investigated Wnt pathway expression. We also tested the potential of Wnt pathway inhibitors in elimination of MCL-ICs. RESULTS We showed that MCL-ICs are resistant to genotoxic agents vincristine, doxorubicin, and the newly approved Burton tyrosine kinase (BTK) inhibitor ibrutinib. We confirmed the differential up-regulation of Wnt pathway in MCL-ICs. Indeed, MCL-ICs were particularly sensitive to Wnt pathway inhibitors. Targeting β-catenin-TCF4 interaction with CCT036477, iCRT14, or PKF118-310 preferentially eliminated the MCL-ICs. CONCLUSIONS Our results suggest that Wnt signaling is critical for the maintenance and survival of MCL-ICs, and effective MCL therapy should aim to eliminate MCL-ICs through Wnt signaling inhibitors.
Collapse
Affiliation(s)
- Rohit Mathur
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Lalit Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Frank K Braun
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Jorge Romaguerra
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - M Alma Rodriguez
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Zhang ZJ, Bulur PA, Dogan A, Gastineau DA, Dietz AB, Lin Y. Immune independent crosstalk between lymphoma and myeloid suppressor CD14 +HLA-DR low/neg monocytes mediates chemotherapy resistance. Oncoimmunology 2015; 4:e996470. [PMID: 26137410 PMCID: PMC4485750 DOI: 10.1080/2162402x.2014.996470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/05/2022] Open
Abstract
We have previously reported a novel phenotype of myeloid suppressors in lymphoma patients characterized by a loss of HLA-DR expression on monocytes, CD14+HLA-DRlow/neg. These cells were directly immunosuppressive and were associated with poor clinical outcome. In this study, we found that lymphoma tumors could have more than 30% of their tumor occupied by CD14+ cells. This intimate spatial connection suggested substantial cell–cell communication. We examined cross talk between monocytes from healthy volunteers (normal) and lymphoma cells in co-culture to identify the mechanisms and consequences of these interactions. Normal CD14+HLA-DR+ monocytes lost their HLA-DR expression after co-culture with lymphoma cells. Lymphoma-converted CD14+HLA-DRlow/neg cells exhibited similar immunosuppressive functions as CD14+HLA-DRlow/neg monocytes from lymphoma patients. Unexpectedly monocyte additions to lymphoma cell cultures protected lymphoma from cytotoxic killing by chemotherapy drug doxorubicin (DOX). Monocyte mediated resistance to DOX killing was associated with decreased Caspase-3 activity and increased anti-apoptotic heat shock protein-27 (Hsp27) expression. Soluble Hsp27 was detected in supernatant and patient plasma. Increased Hsp27 in plasma correlated with increased proportion of CD14+HLA-DRlow/neg monocytes in patient blood and was associated with lack of clinical response to DOX. This is the first report to describe a non-immune function of CD14+HLA-DRlow/neg monocytes: enhanced lymphoma resistance to chemotherapy. It is also the first report in lymphoma of Hsp27 as a potential mediator of lymphoma and monocyte crosstalk and chemotherapy resistance. Together with previous reports of the prevalence of these myeloid suppressors in other cancers, our findings identify this pathway and these interactions as a potential novel therapeutic target.
Collapse
Affiliation(s)
| | - Peggy A Bulur
- Division of Transfusion Medicine; Mayo Clinic ; Rochester, MN; USA
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine; Memorial Sloan Kettering Cancer Center ; New York, NY, USA
| | - Dennis A Gastineau
- Division of Hematology; Mayo Clinic ; Rochester, MN, USA ; Division of Transfusion Medicine; Mayo Clinic ; Rochester, MN; USA
| | - Allan B Dietz
- Division of Transfusion Medicine; Mayo Clinic ; Rochester, MN; USA ; Division of Experimental Pathology; Mayo Clinic ; Rochester, MN USA
| | - Yi Lin
- Division of Hematology; Mayo Clinic ; Rochester, MN, USA
| |
Collapse
|