Szelest M, Giannopoulos K. Targeting splicing for hematological malignancies therapy.
BMC Genomics 2024;
25:1067. [PMID:
39528914 PMCID:
PMC11552377 DOI:
10.1186/s12864-024-10975-y]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alterations in splicing patterns of leukemic cells have a functional impact and influence most cellular processes since aberrantly spliced isoforms can provide a proliferative advantage, enable to evade apoptosis, induce metabolic reprogramming, change cell signaling and antitumor immune response, or develop drug resistance. In this Review, we first characterize the general mechanism of mRNA processing regulation with a focus on the role of splicing factors, which are commonly mutated in blood neoplasms. Next, we provide a comprehensive summary on the current understanding of alternative splicing events, which confer resistance to targeted treatment strategies and immunotherapy. We introduce the functional consequences of mis-spliced variants (CD19-∆ex2, CD22-∆ex2, CD22-∆ex5-6, CD33-∆ex2, PIK3CD-S, BCR-ABL35INS, BIM-γ, FPGS-8PR, dCK-∆ex2-3, and SLC29A1-∆ex13) production in leukemic cells. Of therapeutic relevance, we summarize novel strategies focused on pharmacological correction of aberrant splicing, including small-molecule splicing modulators and splice-switching oligonucleotides. We also include the findings of recent preclinical investigation of the antisense strategies based on modified oligonucleotides. Finally, we discuss the potential of emerging combination therapies for the treatment of hematological disorders with disrupted splicing.
Collapse