1
|
Huang Y, Wang Y, Tang J, Qin S, Shen X, He S, Ju S. CAM-DR: Mechanisms, Roles and Clinical Application in Tumors. Front Cell Dev Biol 2021; 9:698047. [PMID: 34295898 PMCID: PMC8290360 DOI: 10.3389/fcell.2021.698047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the continuous improvement of various therapeutic techniques, the overall prognosis of tumors has been significantly improved, but malignant tumors in the middle and advanced stages still cannot be completely cured. It is now evident that cell adhesion-mediated resistance (CAM-DR) limits the success of cancer therapies and is a great obstacle to overcome in the clinic. The interactions between tumor cells and extracellular matrix (ECM) molecules or adjacent cells may play a significant role in initiating the intracellular signaling pathways that are associated with cell proliferation, survival upon binding to their ligands. Recent studies illustrate that these adhesion-related factors may contribute to the survival of cancer cells after chemotherapeutic therapy, advantageous to resistant cells to proliferate and develop multiple mechanisms of drug resistance. In this review, we focus on the molecular basis of these interactions and the main signal transduction pathways that are involved in the enhancement of the cancer cells’ survival. Furthermore, therapies targeting interactions between cancer cells and their environment to enhance drug response or prevent the emergence of drug resistance will also be discussed.
Collapse
Affiliation(s)
- Yuejiao Huang
- Medical School, Nantong University, Nantong, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuchan Wang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jie Tang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Bommer UA, Vine KL, Puri P, Engel M, Belfiore L, Fildes K, Batterham M, Lochhead A, Aghmesheh M. Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun Signal 2017; 15:9. [PMID: 28143584 PMCID: PMC5286767 DOI: 10.1186/s12964-017-0164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Translationally controlled tumour protein TCTP is an anti-apoptotic protein frequently overexpressed in cancers, where high levels are often associated with poor patient outcome. TCTP may be involved in protecting cancer cells against the cytotoxic action of anti-cancer drugs. Here we study the early increase of TCTP levels in human colorectal cancer (CRC) and the regulation of TCTP expression in HCT116 colon cancer cells, in response to treatment with the anti-cancer drugs 5-FU and oxaliplatin. Methods Using immunohistochemistry, we assessed TCTP levels in surgical samples from adenomas and adenocarcinomas of the colon, compared to normal colon tissue. We also studied the regulation of TCTP in HCT116 colon cancer cells in response to 5-FU and oxaliplatin by western blotting. TCTP mRNA levels were assessed by RT-qPCR. We used mTOR kinase inhibitors to demonstrate mTOR-dependent translational regulation of TCTP under these conditions. Employing the Real-Time Cell Analysis (RTCA) System and the MTS assay, we investigated the effect of TCTP-knockdown on the sensitivity of HCT116 cells to the anti-cancer drugs 5-FU and oxaliplatin. Results 1. TCTP levels are significantly increased in colon adenomas and adenocarcinomas, compared to normal colon tissue. 2. TCTP protein levels are about 4-fold upregulated in HCT116 colon cancer cells, in response to 5-FU and oxaliplatin treatment, whereas TCTP mRNA levels are down regulated. 3. mTOR kinase inhibitors prevented the up-regulation of TCTP protein, indicating that TCTP is translationally regulated through the mTOR complex 1 signalling pathway under these conditions. 4. Using two cellular assay systems, we demonstrated that TCTP-knockdown sensitises HCT116 cells to the cytotoxicity caused by 5-FU and oxaliplatin. Conclusions Our results demonstrate that TCTP levels increase significantly in the early stages of CRC development. In colon cancer cells, expression of this protein is largely upregulated during treatment with the DNA-damaging anti-cancer drugs 5-FU and oxaliplatin, as part of the cellular stress response. TCTP may thus contribute to the development of anti-cancer drug resistance. These findings indicate that TCTP might be suitable as a biomarker and that combinatorial treatment using 5-FU/oxaliplatin, together with mTOR kinase inhibitors, could be a route to preventing the development of resistance to these drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0164-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia. .,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Kara L Vine
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Prianka Puri
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Present address: Southeast Sydney Illawarra Area Health Services, Sydney, NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Lisa Belfiore
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Karen Fildes
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Marijka Batterham
- School of Mathematics and Applied Statistics, Faculty of Engineering and Information Sciences University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Alistair Lochhead
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Southern IML Pathology Wollongong, 2500, Wollongong, NSW, Australia.,Present address: Syd-Path, St. Vincent's Hospital Darlinghurst, Sydney, 2010, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Illawarra Cancer Care Centre, The Wollongong Hospital, Wollongong, 2500, NSW, Australia
| |
Collapse
|
3
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
4
|
Huang Y, Xu X, Ji L, Wang Y, Wang S, Tang J, Huang X, Yang X, He Y, He S, Cheng C. Expression of far upstream element binding protein 1 in B‑cell non‑Hodgkin lymphoma is correlated with tumor growth and cell‑adhesion mediated drug resistance. Mol Med Rep 2016; 14:3759-68. [PMID: 27599538 DOI: 10.3892/mmr.2016.5718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Cell adhesion‑mediated drug resistance (CAM‑DR) remains a major obstacle to the effectiveness of chemotherapeutic treatment of lymphoma. Far upstream element binding protein 1 (FBP1) is a multifunctional protein that is highly expressed in proliferating cells of several solid neoplasms; however, its expression and biological function in B‑cell lymphoma is largely unknown. FBP1 expression in both reactive lymphoid tissues and several B‑cell lymphomas, including follicular lymphoma and diffuse large B‑cell lymphoma were detected by immunohistochemistry analysis. FBP1 expression in B‑cell lymphoma was also associated with poor survival outcomes. Functionally, small interfering RNA‑mediated silencing of FBP1 was able to inhibit the proliferation of B‑cell lymphoma cells, resulting in G0/G1 phase cell cycle arrest. Furthermore, results of a cell adhesion assay demonstrated that adhesion to fibronectin or bone marrow stromal cells induced FBP1 expression, which in turn facilitated cell adhesion. Finally, FBP1 knockdown reversed CAM‑DR. These findings support a role for FBP1 in non‑Hodgkin lymphoma cell proliferation, adhesion and drug resistance, and may lead to the generation of a novel therapeutic approach targeting this molecule.
Collapse
Affiliation(s)
- Yuejiao Huang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Lili Ji
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuchan Wang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Shitao Wang
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jie Tang
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xianting Huang
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaojing Yang
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yunhua He
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Chun Cheng
- Department of Immunology, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|